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AFIT/GCA/LSQ/91S-10

Abstract

This thesis covers three objectives: 1) a background

reference document concerning recoverable spares cost

estimating was developed; 2) a representative sample of

existing spares cost models were evaluated; and 3) aircraft

physical and performance characteristics were used to

develop a model for estimating annual replenishment spares

costs. The two-part model involved developing a

.condemnations cost estimating relationship (CER) first and

then developing both a CER and spreadsheet generated factors

-which related condemnations to replenishment spares costs.

Four condemnation CERs were evaluated--one linear, one

.arithmetic transformation and two logarithmic transformation

(both X and Y) CERs. Only the logarithmic transformations

provided statiscally acceptable results, and even these

models exhibited wide prediction intervals. This weakness

was due to the large amount of variability in the CER

databases (as evidenced by the number of outliers).

The CER relating condemnations to replenishment spares

costs was a poorer statistical performer. Spreadsheet

generated factors showed that the ratio of replenishment

spares to condemnations requirements exhibited a downward

trend across the data years--suggesting that the factors

should be periodically re-validated. Mission design

averages for fourteen weapon systems are also provided.

xi



A MODEL FOR ESTIMATING AIRCRAFT RECOVERABLE

SPARES ANNUAL COSTS

I. Introduction

General Issue

In the not too distant past, when new aircraft were

being considered for development and production, logistics

support "took a back seat" to considerations such as

acquisition cost, schedule, and performance (Templin:21-22).

Current Air Force policy now recognizes the need to consider

logistical support throughout a weapon system's life cycle,

from the earliest stage of concept exploration to final

phase-out and disposal (TASC, 1989:Ch 5, 3). This change in

emphasis is appropriate because operations and support (O&S)

costs, at 60%, typically account for the largest share of a

aircraft's total life cycle cost (TASC, 1989:Ch 5, 9).

While political pressure is still great to reduce the

acquisition costs of new aizrcraft, an underlying theme of

this new emphasis on logistics support is that by spending

more money up front to buy highly reliable/maintainable

weapon systems, the Air Force can save money over the

system's life cycle due to reduced O&S costs.

A major contributor to these O&S cost is the cost of

recoverable spares (those which can be repaired when

1



broken). Several factors point to the need for improved

spares cost prediction capabilities.

The first factor is the inadequacy of current cost

models which can be used early in a weapon system's life

cycle. Because cost estimates must be created for new

weapon systems long before detailed maintenance plans and

aircraft performance history are available, cost models used

in the early design stage typically have limited input data

and provide estimates only at highly aggregated levels (May,

1982:Ch 3, 5-6; TASC, 1989:Ch 5, 55). Cost estimating

relationship (CER)-based models (also known as parametric

models) are typically used during this stage. Even this

early in the acquisition life cycle, however, important

information concerning such factors as aircraft physical and

performance characteristics are often evaluated for their

cost impact. The problem lies in the fact that,

historically, parametric spares models used at this stage

have failed to include these important potential cost

drivers (May, 1982:Ch 3, 3; Rexroad, Tillia, and Tritle,

1990:1). Because the models do not adeqiately explain what

logically "drives" their estimates, they are difficult to

defend. Additionally, since they are typically based solely

on acquisition costs, any increases in design or production

will indicate increased O&S costs. Thus, they can't be used

to justify additional acquisition funds to save O&S funds.

They provide inadequate insight into how cost changes in

relation to the various design tradeoffs being evaluated.

2



Cost estimates are also required to support the

development of spares budgets several years before the

actual deployment of new weapon systems. The same situation

described above applies here as well. The parametric cost

models used to support the budget requirements provide no

insight into what is driving the estimate. The

requirements, therefore, are hard to defend and are subject

to Congressional budget cuts.

Another cause for concern about current spares cost

prediction capabilities is that HQ AFLC/FMBSR has recently

transferred most of its responsibility for initial spares

budget preparation to the Air Logistics Centers (ALCs)

[FMBSR still budgets for common support equipment, a small

percentage of the total requirement, and whole engine spares

are handled separately]. The FY 92/93 Budget Estimate

Submission (BES), dated September 1990, marked the first

time that the ALCs were given this responsibility. Faced

with this new task, the ALCs had many procedural questions

for the previous estimators--HQ AFLC/FMBSR (Neuhart, 1991).

Given the fact that FMBSR has been using a technique

criticized for its exclusion of cost drivers (as described

above), new techniques are desired (Rexroad, Tillia, and

Tritle, 1990:1).

A final factor is the Defense Management Review

Decision (DMRD) 904, dated 9 November 1989, which placed

depot level repairable parts under a stock fund concept

(LaGrone, 1990:Ch 1, 1). Under this concept, control of

3



obligation authority for recoverable spares will also be

handed down from HQ AFLC to the individual ALCs. This

3hould prompt much greater interest from the ALCs in

obtaining new, more defendable cost estimating models for

use, not only in the early acquisition stages, but over the

entire life cycle of their weapon systems.

,pecific Problem

A much criticized, yet common CER used to predict

spares costs involves multiplying recurring aircraft flyaway

costs by a spares "factor" (Dement, 1990:Sec 1; May,

1982:Chap 3,3: Rexroad, Tillia, and Tritle, 1990:1). The

underlying logic of this model is limited to the assumption

that the greater a weapon system's flyaway cost, the more

expensive its spares will be. Potential cost drivers such

as aircraft physical and performance characteristics are

excluded. Parametric models which provide greater insight

into underlying causal relationships are needed.

In addition to needing improved models for spares cost

estimating, both DMRD 904 and the ALCs' new responsibility

for estimating spares costs necessitate a greater

understanding of the entire spares cost estimating process

at management levels below the major command. As new

personnel become involved in estimating spares costs for the

first time, they will need a basic understanding of the

factors they must consider and a familiarity with the

current estimating techniques available. Although numerous

4



O&S cost models can be used to predict recoveraole spares

requiremevnts, frequently organizations are familiar with

their own model(s) but know little, if anything, about other

available models. Research is needed to differentiate

between the models and identify their appropriate uses.

Research Objectives

Given these serious deficiencies in the current

recoverable spares cost estimating field, the objectives of

this thesis are threefold:

1) A general overview of the entire recoverable spares
cost estimating process will be provided for
personnel new to this field.

2) A summary-level description of several currently
available cost models a;,plicable to recoverable
spares will be provided.

3) Aircraft physical and p' rformance characteristics
will be evaluated as po 'ential cost drivers to
develop a new parametric model for estimating
annual replenishment spores costs.

In satisfying these objectives there are a number of

questions that will have to be answered:

1) How are recoverable spares currently managed?

2) What factors afiect the cost of recoverable spares?

3) How do cost estimaLtr- techniques vary depending on
the estimate's purpose andir,/ une aircraft's life
cycle stage?

4) What are the purposes, igorithms, data inputs and
sources, and underlying logic of the existing
models?

5



Scopet

The scope of this paper is limited to estimating the

cost of cecoverable spares. These spares can be defined as

"repairable parts, assemblies. '.-mponents, etc. used in the

repair of higher level a::: (Reynolds, 1989:49).

This excludes repair parts, %;i-,,ch can be defined as

"consumable, non-repairable , used to repair higher

level assemblies" (Reynolds, L_,,.j:49). The following

sentence uses these terms in context: "It may be cheaper to

repair a broken 'spare' carcuit board than to buy a new one,

but it is never more economical to fix a broken 'repair

part' such as a nut or a screw."

Additionally, the costs estimated are limi.ted to

peacetime operating stock (POS) requirements and therefore

exclude War Readiness Material (WRM) calculations. The

logistics support ?equired during war time is very different

than that needed in peace time and therefore the two

scenarios require separate cost prediction models

(Hoffmayer, Finnegan, Jr., and Rogers, 1980:5).

According to reliability theory (Gill, 3.991:21-41), the

number of component failures (and therefore condemnations)

is higher early in a weapon system's life cycle due to

manufacturing defects and higher late-r ia the weapon

system's life cycle dti to wear out. This thesis is limited

to predicting recoverable spares requirements during thp

time between these two extremes--when failure rates are,

according to theory, fairly constant. In order to

6



II. Backqround

Introduction

To enhance readability, the general spares cost

estimating overview and summary of existing cost models

applicable to spares (research objectives one and two) are

included as Appendix B and C to the thesis. Those readers

who are new to spares cost estimating may want to read these

appendices before proceeding. This chapter relates to the

third research objective--development of a new spares CER.

It begins by describing the selection of data used in the

CER development. Following this, a brief justification for

the use of the parametric estimating technique is provided

and the assumptions of linear regression are addressed.

Next, existing spares CERs are evaluated in an attempt to

narrow down the list of cost driver candidates. Finally, a

brief summary of the literature review is provided.

Data Selection

Perhaps one of the most difficult aspects of developing

a good aircraft spares CER is obtaining an adequate

database. This section begins by describing the problems

associated with using obligation data as a dependent

variable. Condemnation spares costs were chosen as an

alternative dependent variable for a replenishment spares

model and the rationale for this decision is discussed.

Because condemnation costs do not equate exactly to

10



(called the dependent variable), to one or more other
cost drivers (called the independent variables) (Ch 10,
3).

Cost Drivers - "Those [independent] variables that
exhibit some systematic relationship with cost" (Ch 10,
3).

Flyaway Costs - Non-rec:urring plus recurring costs
for airframe, propulsion and avionics, program
management, test and evaluation, [and] allowances for
engineering changes. (Levine and Horowitz, 1989:5)

Initial Spares - Repairable components which support
newly fielded end items (or principal items) for the
entire production run of the aircraft (Rexroad, Tillia,
and Tritle, 1990:21).

Life Cycle Cost (CC) - The total cost to the
Government of acquisit-on and ownership of the system
over its full life it includes the cost of
development, acquisition, operation, support, and where
applicable, disposal. (Ch 5, 33)

Obligation - As used in the Air Force program control
community, funds are said to be "obligated" at that
point in time when the contractual agreement between
the Air Force and contractor is posted into the
official accounting and finance records. "Obligations"
are separate from "commitments" and "expenditures."
The former takes place when a purchase request or other
authorized commitment document is signed by the
accounting and finance certifying official and the
latter takes place when the Air Force actually pays the
Contractor.

Operations and Support (O&S) Costs - Fixed and variable
costs of personnel, material, facilities, and other
items needed largely for the peacetime operation,
maintenance, and support of a system during activation,
steady state operation, and disposal. (Ch 17, 3)

Provisioning - The process of determining and acquiring
the range and quantity (depth) of spares and repair
parts, and support and test eq ',.ient required to
operate and maintain an end item of material for an
initial period of service. (Ch 5, 34)

Reliability - The probability that the system will
satisfy the need for which it was intended in an
acceptable manner, for a given period of time, when
deployed and used under a given set of operating
conditions. . . . Satisfactory performance describes

8



the level at which the item/system must perform;
performance below this level is then considered
"failure" even though the specific part/component has
not broken or reached a zero performance level. (Ch 5,
16)

Replenishment Spares - Repairable components,
assemblies, or subassemblies required to resupply
initial stockage or increased stockage for reasons
other than support of newly fielded end items.
Replenishment would include additional stockage due to
increases such as usage, readiness initiatives, and
redeployment of end items. (Ch 17, 40)

9
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To enhance readability, the general spares coat

eastimating overview and summary of existing cost models

applicable to spares (research objectives one and two) are

included as Appendix B and C to the thesis. Those readers

who are new to spares cost estimating may want to read thexe

appendices before proceeding. This chapter relates to the

third research objective--development of a new spares CER.

It begins by describing the selection of data used in the

CER development. Following this, a brief justification for

the use of the parametric estimating technique is provided

and the assumptions of linear regression are addressed.

Next, existing spares CERs are evaluated in an attempt to

narrow down the list of cost driver candidates. Finally, a

brief summary of the literature review is provided.

Perhaps one of the most difficult aspects of developing

a good aircraft spares CER is obtaining an adequate

database. This section begins by describing the problems

associated with using obligation data as a dependent

variable. Condemnation spares costs were chosen as an

alternative dependent variable for a replenishment spares

model and the rationale for this decision is discussed.

Because condemnation costs do not equate exactly to

I0



replenishment spares costs, the findings from previous

studies of the relationship between these two cost

categories is provided. Next, the problems associated with

finding an alternative dependent variable for an initial

spares model are discussed. Finally, the logic behind the

independent variable candidates analyzed in the CER

development is provided.

Dependent Variable Data Problem. The problem in spares

cost model development most frequently mentioned in the

literature is the lack of good data to validate the cost

models (Alexander, Brookey, Erhart, Fulton, Hofmann, and

Shutak, 1990:ch IX, 7; Dement, 1991; Levine and Horowitz,

1989:1; May, 1982:Ch 10, 5-6). The most commonly used

dependant vaLiable for spares cost model development was

actual spares obligations. Obligation data presents two

general problems: 1) reliable data is hard to find, and 2)

even if reliable data can be found, what "was obligated" is

still a poor proxy for what "should have been obligated."

There were several reasons given for why finding

reliable obligation data is judged "difficult to impossible"

(Alexander, Brookey, Erhart, Fulton, Hofmann, and Shutak,

1990:Ch IX, 7). The current definition of initial spares

(Rexroad, Tillia, and Tritle, 1990:21) has only been in

existence since March 1985 when the Office of the Secretary

of Defense provided the current interpretation. Until that

time there was no formaL definition. The common practice,

11



however, was to budget enough initial spares money (BP16) to

cover the first two years' requirements after initial

deployment of the weapon system; with subsequent spares

funded by replenishment spares money. Because initial

spares, as currently defined, now cover the entire

production run of the weapon system, including any increased

requirements for previously fielded systems (Neuhart, 1990),

the mix of initial and replenishment spares funding has

shifted. This definitional change makes it difficult to

separate weapon system obligations over time between initial

spares and replenishment spares.

Additional reasons cited for difficulty in finding

reliable obligation data include:

vast quantities of data at very detailed levels with
few pre-existing levels of data aggregation other than
the top ones; [and]

separation of explanatory worksheet files from the
quantitative data. . . . (Alexander, Brookey, Erhart,
Fulton, Hofmann, and Shutak, 1990:ch IX, 7)

Once these difficulties are overcome one is still faced

with the fact that "what was obligated" does not necessarily

coincide with "what should have been obligated." Many cost

model projections are based upon given values for

independent variables such as the number of flying hours,

maintenance factors, and part utilization rates (Rexroad,

Tillia, and Tritle, 1990:7, 9, 11, 12, 14). Through these

factors the cost estimate is, in effect, provided for and

based upon a given demand/availability performance level.

12



However, flexibility is allowed and the "replenishment

spares budget does not have to be expended in the same

manner as it is justified" (May, 1982: ch 10, 6). The

operational performance level used as the basis for the cost

estimate may therefore not be achieved. The cost estimate

could conceivably provide accurate estimates for the

proposed performance level and still not resemble the actual

obligation figures because of the difference between the

proposed and achieved performance levels. In addition,

switching obligations from one weapon system to another can

be influenced by political considerations not envisioned in

the cost model. Thus, the obligations' correlation to the

cost estimate is greatly impaired (Dement, 1991).

Finally, it is hard to track obligations to actual

usage of spares because: 1) the spares budgets are forecast

two years before funds are actaally obligated (due to budget

cycle) for spares that won't be used for another two years

(due to contractor delivery lead time) and 2) the obligation

money budgeted for one fiscal year, say 1990, can be spent

over three fiscal years (1990 - 1992) making it impossible

to determine what spares are procured with what budget

year's obligations (May, 1982; ch 10, 6) [Note that spares

money will only be good for one year's obligation under the

new stock fund concept but this problem still affects old

data].

The end result of these data problems is that: 1) those

cost models developed using obligation data as their
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dependent variable impair the internal validity of their

model and must cL at their results, or 2) cost models are

developed based on logical relationships but never validated

against actual data.

Initial Spares Data. Because of these problems with

obligation data, an attempt was made to identify another

suitable dependent variable. Historically, differences in

the requirements development processes for initial and

replenishment spares has made alternative dependent variable

identification more difficult for initial spares.

In the replenishment spares arena, annual buy

requirements are generated by the D041, "Recoverable

Consumption Item Requirement System." These near term

requirements are then used as inputs to a regression-based

model known as the Air Logistics Early Requirements

Technique (ALERT) which is used to develop Program Objective

Memorandum (POM) requirements (the POM is a long range

budget document]. This computerized process provides a

central database of historical requirements that can be used

as an alternative dependent variable data set.

The situation is different in the initial spares arena.

Because the initial spares requirements process, governed by

AFLCR 57-27, has to date been primarily a manual system, no

central database of annual initial spares requirements

exist. Without a central database, no methodology akin to

ALERT has been developed for budget development purposes.
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To develop a historical database, one would have to

contact the numerous inventory management specialists and

end article item managers at each of the Air Logistics

Centers. It is these individuals who developed the initial

spares requirements and, hopefully, kept records of their

manual computations.

A computerized approach to developing initial spares

requirements using computations similar to D041 is currently

in systems validation test and is due to come on line by the

end of the summer of 1991 (Homer, 1991). The new

computerized system, known as the Initial Requirements

Determination (IRD) system, will have the capability to

store historical data and will be useful to future analysts.

Given the time constraints of this thesis, this task was not

attempted and therefore a CER for initial spares is not

attempted.

Replenishment Spares Data. The central requirements

database for replenishment spares made identifying an

alternative dependent variable an easier task. A partial

solution to the problem was found in "condemnation spares"

costs. Current AF policy states that if the cost to repair

a failed spare part exceeds 75% of the cost to purchase a

new spare, the item is "condemned" (i.e., not repaired)

(Novak, 1991). Condemnation spares, therefore, are those

new spares purchased to replace the condemned spares.

Condemnation spares make for a better dependent

variable in that they are not obfuscated by many of the
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factors affecting total replenishment spares obligations.

For example, an aircraft's annual condemnation spares costs

(as maintained in the Weapon System Cost Retrieval System

(WSCRS)) are the aggregated product of all its condemned

parts multiplied by the latest purchase price on record for

these parts. Although condemnations are only a part of the

total replenishment spares requirement, they are, at least,

a true indicator of spares usage. Additionally, the WSCRS

condemnation costs for each fiscal year (FY) correspond

directly to the condemnations requirements for the same FYs.

Finally, condemnations spares requirements track logically

to cost drivers such as aircraft performance and physical

characteristics.

Alternatively, obligations take place acquisition lead

time away (approximately two years) from the actual demand

and are, therefore, only estimates of the true demand.

Obligations are tracked by fiscal years just like

condemnations; but, as mentioned befcre, because any given

fiscal year's funds may be obligated over a three year time-

frame, the obligations are much harder to track to the

spares they purchase. Finally, like condemnations,

obligations may logically track to aircraft performance and

physical characteristics, but they are greatly influenced by

other factors, such as political pressures, which aren't

accounted for in the model (Dement, 1991).

It was stated that condemnation costs are just a

partial solution to the replenishment spares dependent
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variable data set problem. This is true because

condemnations costs are just one segment of total

replenishment spares costs. In a world with perfect

predictive powers, the term "replenishment" spares would be

completely accurate because all the factors affecting demand

for spares would be known (e.g., flying hour programs, parts

utilization rates, maintenance factors). Because (in this

perfect world) the right number of initial spares would

always be bought, the replenishment spares function would

simply be to "replenish" those spares which are no longer

economically repairable (condemnations). In reality, funds

aren't always available to purchase the desired number of

initial spares, mission requirements change, and actual

performance histories show that maintenance factors need

revision. The result is that sometimes the Air Force buys

too many initial spares, sometimes too few. At other times,

changes require the purchase of spares for other than

replacement of condemnations.

Demand Volatility. All of these factors which

make up the difference between condemnation spares costs and

total replenishment spares costs drive what is known in the

HQ AFLC/FMCA office as the "churn" or "demand volatility"

factor. It (demand volatility) accounts for the fact that

replenishment spares funds are used to purchase additive

requirements and (on occasion) pipeline spares requirements.

The "churn" factor used in FMCA's Logistics Support Cost

(LSC) model is 2.15 (Novak, 1991). This value is multiplied
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by the condemnation spares cost generated by the model to

arrive at the total replenishment spares cost.

The condemnation costs were identified as being a

parti.al solution to the dependent data set problem because I
demand volatility must be accounted for before a total

replenishment spares cost can be predicted. To complete the ]
spares models for this thesis, research will be done to I
either validate or improve upon the current churn factor.

Two churn studies were evaluated.

Mr. Bob Novak, a Operations Research Analyst from HQ

AFLC/FMCA, performed the first of the analyses in 1987 using

replenishment spares cost predictions obtained from the D041

computer system. The D041 product used in budget

development is known as the Central Secondary Item

Stratification (CSIS) report. Each June CSIS contains spare

requirements forecasts for the June quarter and the

following 12 quarters. As the fiscal year progresses, each

passing quarter is dropped from the computations until the

following June cycle when another fiscal year's (four

quarters) forecast is added (LMMIMO6, 1987:Ch 7, 8). As a

result, the last quarter's requirements for each fiscal year

will be predicted 12 times (once every quarter) over a three

year period before the quarter is entered into. The

assumption behind Mr. Novak's analysis was that the first

time a quarter was predicted, it represented purely

condemnations spares requirements. None of the changes

associated with demand volatility would, he presumed, be
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made until closer to the actual time that the quarter

arrived. So by subtracting the first prediction for a

fiscal quarter from the twelfth prediction for that same

quarter, he assumed the delta would, in fact, be "demand

volatility." He ran this analysis for several aircraft and

received several different churn factors (i.e., last

estimate divided by the first estimate). His bottom line

recommendation was to support a 2.5 churn factor.

By his own admission, the number of aircraft studied

and quarters of data evaluated were insufficient to justify

conclusive findings. The Repairable Stock Program Manager

pointed out that three of the five ALCs feeding quarterly

inputs into the D041 system have failed to update the system

during the June and December runs for as long as he could

remember (Rosenthal, 1991). This also makes the results of

the analysis suspect.

Mr. Ray Johnson, a Cost Analyst from the Air Force Cost

Center, performed the second analysis, dated December 1988.

He used weapon system obligation data from the Departmental

On Line Accounting and Reporting System (DOLARS) tracking

located at the Accounting and Finance Center, Lowry AFB, in

Denver, Colorado and weapon system condemnations costs from

the Weapon System Cost Retrieval System (WSCRS) located at

Wright-Patterson AFB, Ohio in the analysis. In his study,

Mr. Johnson compared the spares obligation data for twelve

aircraft from FY 1979 to FY 1985 with the condemnations

spares costs associated with these obligations. He dropped
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three of the resulting ratios out of the analysis because he

felt they were outliers and averaged the remaining nine

values. His nine aircraft average was 2.15--the same value

used today by HQ AFLC as the standard chu:n value for all

LSC model computations. Mr. Johnson, likB Mr. Novak, felt

that his data set was too small to provide conclusive

results (Johnson, 1991).

To perform a more comprehensive analysis of churn for

this thesis, another approach will be used that combines

aspects from both of the previous studies. An ideal data

source would aggregate spares deliveries by weapon system

for each fiscal year, so that actual deliveries could be

compared to condemnations to develop a churn factor. The

D041 system receives this sort of delivery data at the

national stock number level but it doesn't have the

capability to aggregate the information to the weapon system

level (as needed for this thesis). Because of this, spares

deliveries will be replaced by annual replenishment spares

requirements generated by the D041 system (CSIS) and

scrubbed by the Recoverable Stock Program Manager. These

requirements will be compared to condemnations to develop a

churn factor. This data is available in hard copy from the

Recoverable Stock Program Manager at HQ AFLC/FMBSR.

Condemnations data will come in hard copy format from the

WSCRS system at HQ AFLC/FMCA.

Independent Variable Selection. Physical and

performance characteristics of aircraft are available from a
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number of sources (e.g. Air Force Guide No. 2, Vol. 1

(Green Book) and 2 (Brown Book), Rand, Jane's All the

World's Aircraft). The Green Book and Brown Book contain

official Air Force "ble.ssed" data which is used by HQ

AFLC/FMCA in their anal.,ses and these sources will therefore

be used (unless specifiE.d otherwise) in this analysis.

In an attempt to nrtow down the candidates for

independent variables, ",rior parametric models were

evaluated to see which -elationships were used and their

supporting logic (see subsection entitled "Previous CER

Work"). Additionally, a literature search was conducted for

information pertinent to the independent variable(s)

selection. The balance of this suwsection provides the

results of this analysis, beginning first with casual

relationships which were not included in this thesis' CERs

and then providing the logic behind those variables which

were included.

Component reliabil.ty is logically related to

recoverable spares requ.rements. Less reliable parts are

more likely to fail and require more maintenance attention.

If the failures themselves do not result in the parts being

condemned, the increased maintenance activity may cause wear

and tear on the component until it finally must be

condemned. Engineering estimate based models such as the

Logistics Support Cost (LSC) model use factors such as

component mean time between demand (MTBD) to account for

reliability. However, no equivalent reliability factor at
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the weapon system level of aggregation was identified in the

literature review..

A RAND study discussed several complications in

determining recoverable spares requirements. Although

engineering estimate based models typically include

reliability factors such as the MTBD; because these factors

are common to all users of the components, they lead one to

assume (erroneously) that all users should expect the same

levels of component reliability. However, the operating

environments in which the components are placed vary

considerably and this impacts the components' reliability.

For example, summer temperatures at bases like Luke AFB are

such that "temperatures in the avionics bay of idle aircraft

may exceed the Mil Specs for solid state devices" (Crawford,

1988:10). At night the temperatures at Luke AFB cool down

significantly, and the' day to night differential is cited

for causing leaks in hydraulic actuators (Crawford,

1988:10).

Changes in mai.ntenance policies and training programs

will impact the need for spare parts. Two "'AC initiatives--

Combat Oriented Supply Organizatior- (COSO) and Combat

Oriented Maintenance Organization (COMO)--encouraged

"increased reliance on remove-and-replace actions instead of

remove-repair-and-replace maintenance actions" (Crawford,

1988:10). Deployment of aircraft to Red Flag exercises may

be accompanied by a surge in spares requirements as aging,
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but still functioning parts, are replaced to ensure maximum

performance during the training (Crawford, 1988:10).

Finally, the RAND study revealed that "to a certain

extent demand patterns may follow parts availability"

(Crawford, 1988:10). The number of aircraft continuing to

fly with a certain defective, non-critical part may continue

to rise until a shipment of the part becomes available--then

a surge of requests for the part come in.

All of the complications identified in the RAND study

have at least one thing in common. It is very difficult, if

not impossible, to capture their effects in generic weapon

system CERs. Even detailed engineering estimates do not

adequately account for these factors. This accentuates the

need for expert judgement in the requirements development

process. "Good models" alone will not guarantee an accurate

estimate.

The number of levels of maintenance (base,

intermediate, and depot) can also be logically tied to

recoverable spares requirements. In the initial spares

arena, as the number of repair levels increases, so does the

number of components in the repair "pipeline" required to

achieve support objectives. Levels of maintenance can also

be tied to replenishment spares due to the fact that

pipeline requirements are typically paid for with

replenishment spares funding when initial spares funds are

inadequate. The levels of maintenance may also influence

the design of the spares; which, in turn, may affect the
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replenishment spares requirement. The relationship of

maintenance levels to recoverable spares is more direct in

the initial spares arena, and because an initial spares CER

will not be developed in this thesis, no attempt was made to

determine the number of levels of maintenance associated

with each of the data base MDS.

The "bath tub curve" theory of reliability, as

presented in AMGT 559, "Life Cycle Cost and Reliability," at

the Air Force Institute of Technology (AFIT), was already

mentioned in defining the scope of this thesis. This theory

suggests that component failure rate (and therefore

condemnations) is a function of component age--with failure

rates that are higher during the early and late stages of a

weapon system's life and relatively constant in between

these extremes (Gill, 1991:21). The "inverse of average

fleet age" is used in the ALERT spares model (Rexroad, Lucas

and Collins, 1989:2) and the "average fleet age" is used in

a RAND spares model (Crawford, Landsdowne, and Finnegan,

1908:22-23) to account for this relationship. However,

given that the scope of this thesis has been limited to

mature weapon systems (where, according to theory the

failure rate is reasonably constant), this type of factor

should have no impact on the recoverable spares

requirements.

An unsuccessful attempt was made to evaluate the

"inverse of average fleet age" factor as a check on the

"mature weapon system" constraint placed on this thesis's
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data base. The historical database for this variable (used

in the ALERT model) was at the "MD" level of aggregation

instead of "MDS." No other source for this variable was

identified. If, when evaluated, the variable had been

statistically significant, this would have been considered

an indication that either: 1) immature or old weapon system

data was erroneously included in the data (i.e., the

separation of weapon systems as being early, mature, or old

was done inaccurately), or 2) the bath tub theory is

difficult to apply on real weapon systems that experience

numerous modifications and therefore have components with a

myriad number of different ages.

Not only is it logical to assume that components will

deteriorate with age, it is also logical to assume that

greater utilization of components will cause them to wear

out due to repeated operational stress. One spares model

accounted for this using annual "flying hours" as an

independent variable (Crawford, Lansdowne, and Finnegan,

1988:24).

Unless one knows something about the intensity of these

flying hours (i.e., the number of aircraft the hours are

spread over), however, this measure does not logically seem

to measure physical stress as much as it measures

"opportunities for something to go wrong" (e.g., bird

strikes). This doesn't invalidate "flying hours" as a

potential cost driver. It simply changes its underlying

logic. Its effect is similar in nature to a RAND spares CER

25



cost driver--the annual number of "active aircraft" in the

MDS inventory (Hoffmayer, Finnegan, Jr., and Rogers,

1980:16). For this thesis, "annual flying hours", "number

of aircraft" and "annual flying hours divided by the number

aircraft" will all be evaluated.

For some components the "number of s.orties per

aircraft" or "landings per aircraft" would be a better

indicator of physical stress than "flying hours per

aircraft" (e.g., landing gear). The annual numbers of

sorties and landings were obtained from AFALDP 800-4 (also

referred to as AFALCP 800-4 and ALDP 800-4 in later

versions), "Acquisition Management Aircraft Historical

Reliability and Maintainability Data." The numbers of

"sorties" and "landings" are, once again, considered

measures of opportunities for things to qo wrong. The

"annual sorties per aircraft" and "annua landings per

aircraft" are evaluated as measures of utilization

intensity. "Annual flying hours divided by annual sorties"

was evaluated as an indicator of MDS mission profiles.

Greater sortie lengths should imply greater utilization of

some components while shorter sortie lengths would imply

greater utilization of others.

It should be noted that, due to holes in the annual

sorties and annual landings data, th~se models developed

with these variables or derivations of these variables had

significantly smaller databases.
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Some components are not being utilized during flight

and others are utilized even before flight begins. However,

given the weapon system level of aggregation in this thesis,

it was not possible to account for individual component

utilization differences.

Dummy variables will be used to separate the MDS by two

classes of aircraft: 1) fighter/attack/trainer/fighter-

bomber and 2) bomber/cargo/tanker. It is logical to assume

that relatively light, highly maneuverable aircraft

(fighter/ attack/trainer/fighter-bomber) put different kinds

of stresses upon their components than heavy, unmaneuverable

aircraft (bomber/cargo/tanker).

Engine spares account for a large percentage of the

total recoverable spares requirement (Steinlagy, 1991) and

therefore it is appropriate to evaluate independent

variables which relate to this weapon system subsystem's

requirements. "Thrust per engine" is cited as an indicator

of engine complexity (Issacs, Montanaro, and Olivo,

1986:169). As this variable increases, one expects the

number and cost of engine spares required to increase. For

this thesis, maximum sea level static thrust is used. The

"number of engines" per weapon system is related to the

number of components which can be condemned and therefore to

the spare requirement as well.

Another factor which contributes to the number of

components is the weapon system size. Two types of sizing
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factors will be evaluated for this thesis: 1) "empty weight"

and 2) aircraft "length plus span."

Finally, weapon system technical complexity and

performance are thought to influence the cost of annual

spares requirements. Logically, one would expect high

performance aircraft with high technical complexity to place

greater stress on their components during operations.

Additionally, the individual components are expected to be

more expensive for the high performance, high technical

complexity aircraft. Relating this logic to another

transportation medium, one would expect a greater number of

failures and more expensive failures on an Indy race car

than on the family van.

In addition to the "thrust per engine" variable

mentioned earlier, other candidate variables examined as

performance and technical complexity drivers include:

"maxload factor" (i.e., how many "Gs" was the aircraft

designed to withstand), the "ratio of maximum takeoff weight

to empty weight", the "maximum rate of climb at sea level,"

and the "maximum combat radius."

Data Population. The range of the aircraft

"population" was largely determined by the availability of

data meeting the "mature weapon system" criteria established

in the thesis scope. The number of MDS included in the

independent variable database was smaller for some of the

variables. While most variables had five years of data for

nineteen MDS (95 data points), "annual landings" data was

28



only available for sixteen MDS for varying numbers of years

(41 data points).

Parametric Model Technique

As discussed before, part of the motivation for this

thesis comes from the critical reviews being given to the

current factor-based approaches used to develop spares

estimates. This dissatisfaction was expressed in a SAF/FMC

message, dated October 1990, and coordinated on by SAF/AQK,

SAF/AQX and USAF/LEX (Robinson, 1991). The message stated

their preference that demand based models be used during

milestone reviews and for independent cost estimates. They

questioned the use of factor based estimates when the data

required for demand based models is usually available by

Milestone II (program initiation approval).

The loss of insight into underlying causal

relationships in the factor based method is not inherent in

all parametric models, however. The problem lies in the

fact that costs based on flyaway cost alone, although easy

to use, do not include the driving forces behind the

estimate. This thesis will attempt to develop a CER(s) with

both increased visibility of its underlying causal

relationships and the ease of use which is characteristic of

parametric models.

Ease of use is an important consideration when analysts

lack either the time or the expertise required to derive

estimates from the more complicated demand based approaches.
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It does no good to have a more powerful model if no one can

use it.

Because the models are designed for use early in the

acquisition life cycle, the aggregate level for the model

will be at the weapon system level or perhaps at the major

subsystem level. This is due to the limited data input

available prior to completion of full scale development

(TASC, 1989, Ch 5, 55). CERs are well suited for dealing

with high aggregate level relationships.

Linear regression describes relationships between

dependent and independent variables in mathematical terms

and, therefore, is the logical choice for CER development.

Reqgression Assumptions

The following assumptions are required for the validity

of classical regression analysis (Murphy, 1990-1991):

1) The appropriate cost drivers (independent variables)
are included in the model.

2) The regression model specifies the correct
relationship between the dependent and independent
variables.

3) The independent and dependent variable data come
from random distributions.

4) There is no bad data (i.e. free of measurement
error, bias, and anomalies).

5) The regression error terms all come from a
normal distribution with a mean of zero.

6) The error terms have constant variance and are
independent from one another.

7) The cost drivers are independent from one another.
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8) Predictions of future requirements can be made by
examining past requirements.

The term "assumption" is a little misleading in that it

implies that these properties are taken for granted. This

is only the case when one is evaluating a poorly documented

regression model. There are tests which can be performed to

provide the analyst confidence that these "assumptions" are

in fact true. The assumptions and the corresponding

diagnostic tests will be discussed in more detail in the

methodology section of the thesis.

Previous CER Work

Using CERs to predict spares costs is not a new idea.

However, the fact that previous parametric models have been

developed does not negate the need for new models. Because

parametric models are based on historical data, they should

be continuously revised and updated to reflect the most

current available data. It is easier to validate an

existing model with new data than to start from ground zero.

A search was conducted, therefore, to identify existing

spares parametric models. The following models will be

discussed in this section: 1) Rand model, 2) Modular Life

Cycle Cost Model (MLCCM), 3) Air Logistics Early

Requirements Technique (ALERT) model, 4) Oversight of

Resources and Capability for Logistics Effectiveness

(ORACLE) model, and 5) Levine and Horowitz Study (The first

three models meet the selection criteria for inclusion in

Appendix C and are included there to make the appendix a
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stand alone document. The discussion concerning the model's

independent variable logic is more extensive in this section

than in Appendix C because of its relevance to the selection

of cost drivers for the CER(s) developed in this thesis.

Appendix C also contains evaluations of non-parametric

models]. A standard format will be followed as closely as

possible for ease of comparison between the five models.

Mgde. tl:- Rand Model. All references in this

subsection, unless identified otherwise, come from the

developer's (see below) 1980 report, Estimatinq USAF

Aircraft Recoverable Snares Investment.

Developer(s): K.J. Hoffmayer, F.W. Finnegan, Jr.,

and.W.H. Rogers of the Rand Corporation, August 1980.

Model Purpose: The model is an update to a 1976

Rand model for estimating USAF aircraft recoverable spares

investment. It includes models for estimating total

replenishment spares requirements at the major subsystem

level (airframe, avionics, and propulsion) and for

estimating condemnation spares requirements at the same

level (v). An attempt was made to devel.op an initial spares

model but this was unsuccessful due to limited data

availability (23). The models provide annual estimates for

peacetime operating stock. War readiness material, spare

engines, and engine spare parts are excluded. The models

a' e intended for use prior to the preproduction or

deployment decision stages of the acquisition life cycle

(iii).
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Model Algorithm: Table 1 provides a list of the

independent variables associated with each subsystem CER.

Table 1

Subsystem CER Independent Variables (12-14)

Airframe CER Avionics CER IPropulsion CER

Total active Total active Total number of
aircraft aircraft installed engines
inventory of the inventory of the in the MDS force
given MDS given MDS

Airframe flyaway Avionics flyaway Propulsion
cost cost flyaway cost

Peak flying hours Dummy variable for
per MDS per year bomber

Dummy variable for
reconnaissance

Dummy variable for
fighter/attack

Cargo dummy var.

Dummy variable for
tanker

The following logarithmic form is common to each of the

subsystem CERs (11):

log Yit = log a +Ejj log x1it + e(1)

where

Yit = investment in POS spares inventory of aircraft
subsystem i at time t.

xijt = the jth characteristic observed on aircraft
subsystem i at time t.

a and f3 regression coefficients.

= the error for aircraft subsystem i at time t.
The errors are assumed to be independent across
subsystems but correlated over time with
subsystem.
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The source document states that a logarithmic form was

chosen to develop the CERs due to their superior handling of

heteroscedasticity and their more "real world"

multiplicative nature (11, 15). They fail to clearly state

whether the transformations are natu:al (in) or common (log)

logarithmic in nature.

Data Inputs and Sources: 'ost data from 1975 to

1978 was provided for the following iircraft (7):

A-7D C-5A RF-4C F-I1D
B-52D KC-135A F-4D F-111F
B-52G C-141A F-4E T-37B
B-52H F-4C F-11k T-38A

Specific data elements and sources ace as follows (4-5):

D041 "Recoverable Consumption Item Requirements System:"

National Stock Number (NSN)
Unit Price (in then-year dollars)
Program Begin Date (earliest re:ord of use)
Program Selection Code (Material Program managing part)
Organization Field Maintenance (OFM) Total Demand

Rate (total item demand expressed in terms
appropriate for its material program)

Base Level Condemnations (NSN level condemnations at
base level)

Depot Level Condemnations (NSN level condemnations at
depot level)

Total Overhaul Condemnations (NSN level condemnations
resulting from planned overhauls)

Total Peacetime Operating Stock Assets
Application (the mission design series (MDS) or other

stock number using the item)
Quantity Per Application

3041 "Procurement History File:"

National Stock Number (NSN)
Contract Date

Amount of Contract ($)
Quantity Procured

"Aerospace Vehicle Inventory Status and Utilization and
Reporting System" (AVISURS):
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Aircraft MDS
Calendar Year and Month
Flying Hours
Sorties
Landings
Average Number of Possessed Aircraft

Other data used in the model development was obtained from
the following sources:

* TO 0025-30, Technical Manual, "Unit Cost of
Aircraft, Guided Missiles, and Engines."

* USAF Statistical Digests
* PA, "USAF Program, Aerospace Vehicles and Flying

Hours."

Assessment: The accuracy of the models provided

are difficult to assess due to the minimal coverage of model

diagnostics. Because Rand does not specify which base was

used in the logarithmic transformations (natural or common),

the reader is left to guess at the significance of the

standard error of the estimate (the SEE is a measure of

prediction accuracy for a transformation using the natural

base)(Murphy, 1990-1991). The propulsion model CER has poor

statistics: R2 of .5841 and SEE of .67318.

It is unclear if the logarithmic form is really

appropriate because they never actually state that they

observed heteroscedasticity in the data; or why they feel a

-multiplicative equation is more "real world". They fail to

document any diagnostics performed or other models attempted

and discarded.

There was limited discussion concerning the logic

underlying the independent variables chosen for the CERs.
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The manner in which subsystem flyaway costs were included in

each of the subsystem CERs may be questioned. One tenet of

the integrated logistics support philosophy is that as an

item's reliability improves, the reduction in its operations

and support costs over its life cycle more than compensates

for its increased acquisition cost (which has resulted from

its improved reliability) (TASC, 1989:Ch 5, 25). The

multiplicative nature of the subsystem CERs does not account

for this belief logically. According to these CERs,

increased acquisition costs will always result in greater

spares costs.

Although the source text does not explain its rationale

for using component flyaway costs, a case can be made that

life cycle O&S costs reduce with improved reliability for

reasons other than reduced spares requirements. After all,

replenishment spares costs are only a subset of the total

O&S costs. More reliable parts should fail less often and

therefore cost less for maintenance and repair. If RAND

believes that these types of savings exceed the increased

spares costs associated with more expensive components, then

their model logic is not contradictory to reliability

theory.

In addition to airframe flyaway cost, the airframe CER

included several additional cost drivers: 1) total active

aircraft inventory of the MDS, 2) peak flying hours, and 3)

mean organization field maintenance total demand rate.

Total active aircraft inventory is a logical cost driver.
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More spares are required as the number of aircraft

increases.

Peak flying hours was used in lieu of programmed flying

hours because it gave "a better statistical fit" (16). The

authors stated that this resulted from "significant

inventories of stock" remaining which had been purchased to

support the Vietnam war (data is from 1975 to 1978) (16).

Although this distinction was not clear to the author, the

use of some sort of flying hour program is logical because

one would expect that the more wear and tear that is placed

on an aircraft, the greater the number of condemnations.

The mean organization field maintenance total demand

rate (OFMTDR) was included as a "measure of airframe

reliability" (17). Component reliability can be logically

tied to condemnations because unreliable parts will fail

more often and may, in the process, be damaged beyond repair

or cause irreparable damage to other components.

Additionally, even parts that can be easily repaired may

receive wear and tear ii. the maintenance process itself

(e.g., stripped bolts, otc) and therefore are condemned

sooner than more reliable parts. In this model, however,

the manner in which the OFMTDR was obtained is not

consistent with application of the CER in early stages of

aircraft development (wtere the authors claim their CERs are

applicable). This vari~ible was a "mean, weighted by the

total item count, of tht OFMTDRs of all the recoverable

airframe items" (17). :;ince a complete list of airframe
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items is unlikely to be available during early stages of

aircraft development, it is unclear how this type of

statistic will be readily available.

The Avionics CER included, in addition to avionics

flyaway costs, dummy variables to distinguish the mission of

the aircraft (bomber, reconnaissance, fighter/attack, cargo,

or tanker) and, once again, the total number of active

aircraft in the MDS inventory. It is logical that the

amount of aircraft avionics equipment will vary by mission

type, and the number of spares required should increase as

the amount of avionics equipment increases. Total aircraft

inventory is logical for the same reason explained

previously.

The propulsion CER included only one additional cost

driver besides the propulsion flyaway costs. The total

number of installed engines in the MDS force is a logical

cost driver--the number of spares required should increase

as the number of engines increases. It should be noted that

this CER includes no cost drivers which will vary over time.

Engines spare parts account for the majority of the

condemnation spares requirements (as seen in the dependent

variable data set) and yet this CER would lead one to

believe that propulsion spares remain relatively constant

over time. This is in contradiction to the "bathtub" theory

of reliability which states that failures (and logically

therefore condemnations) are greater early in a weapon

system's life due to manufacturing defects and later in life
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due to wear out (Crawford, Lansdowne and Finnegan, 1988:23;

Gill:21).

The RAND model was evaluated by an Initial Spares

Working Group comprised of twenty two members representing

HQ AFLC, ASD and HQ AFSC. They concluded that the model's

database should be updated and a clear distinction made

between initial and replenishment spares before they could

use the model (Rexroad and others, 1990:11).

Model #2: Modular Life gygle Cost Model (MLCCM). All

references in this subsection, unless specified otherwise,

come from Grumman Aeros'Dace Corporation's 1986 report

entitled Modular Life C'cle Cost Model for Advanced Aircraft

Systems, Cost Methodololy_ Development and Application. The

authors were R. Isaacs, N. Montanaro, and F. Olivo.

Developer(s): Grumman Corporation, Program Team

directed by Mr. R. Isaacs, September 1986.

Model Purpose: The MLCCM is a parametric-based

series of models for

predicting advancel technology aircraft costs, to the
major subsystem leiels, for the Research, Development,
Test, and Evaluati)n, Production, Initial Support, and
Operations and Support phases of the system life cycle
during conceptual ind preliminary design. (Isaacs,
1986:iii)

Initial and replenishment spares are but subsets of the

overall costs within the production and O&S periods,

respectively. Their cost is broken out for 14 subsystems

(structure, crew system, landing gear, flight control, cargo
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handling, engines, engine installation, environmental

control systems, electrical, hydraulic/pneumatic, fuel

system, avionics, armament, auxiliary power unit) (11) for

two classes of aircraft (fighter/attack/bomber and

cargo/transport/tanker)(x).

Model Algorithm: Because the MLCCM was developed

as a tool for conducting trade studies during the design

stage, the CERs were developed using a Work Breakdown

Structure (WBS) format. In this way the design engineers

would be able to relate costs to the WBS elements for which

they were responsible. Step-wise regression was used to

develop log-linear regression equations. Again, it is

unclear if they used natural or common base transformations.

They limited, for most cases, the number of parameters in

any CER to one third the number of data points (47-48).

While it makes sense to preserve degrees of freedom by

limiting the number of variables used (compared to the

number of data points), it isn't clear why the developers'

chose one third as a criteria ratio.

Data Inputs and Sources: Cost data was derived

from several sources including: "Visibility and Management

of Operating Support Costs" (VAMOSC) system, AFR 173-13
Factors, and the 1975/1976 Operatin. and Supprt Cot

Estimating Reort. Independent variable technical data

sources include: Standard Aircraft Characteristics (SAC)

charts, group weight statements, technical orders, and the

manufacturer.
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The SAC charts werf used to obtain data on engine
design and performz.nce, fuel and tankage, armament,
loading and aircrai't performance, development dates,
etc. Weights, areas, volumes, dimensions, and general
aircraft design characteristics were obtained from the
group weight statements and the manufacturers. Flight
manuals were used for data on electrical, f12,' power,
and flight actuator systems and for general a craft
design characteristics as well [note that not all of
these variables are used in the replenishment spares
CERs]. (13)

Assessment: The fact that the models were

developed with obligation data brings with it all the

uncertainty previously discussed in the data problem

section. The report admits the need for better cost data

inputs (219).

The model statistics provided were not complete. "R"

values were provided as opposed to the "R2" statistic

commonly seen. The R2 values for 5 of the 14 subsystems in

the fighter/attack/bomber class of aircraft were poor (less

than .7) (165-169). No discussion of model diagnostics was

provided.

The independent variables used in the subsystem CERs

differ between two general classes--those for cargo/trans-

port/tanker aircraft and those for fighter/attack/bomber

aircraft. The following text describes the independent

variables used in the cargo/transport/tanker class and how

the variables logically impact subsystem spares

requirements:

1) Structure CER: "Cargo weight" and "cargo

volume" were included as measurements of aircraft size.
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"The size of the aircraft directly relates to the amount of

structural spares required" (209).

2) Crew Systems CER: The "number of primary

compartments" and the "length + span" (LENSPN) were included

as measures of the fuselage interior. "As such [they]

reflect a degree of the demands imposed on the crew system.

Increased size results in larger crews, seats, etc, and as

such results in an increase in replenishment spares costs"

(209). Apparently the logic here is that larger crews

require bigger "crew systems," composed of more parts, and

therefore more spare parts are needed.

3) Landing Gear CER: The "number of landing gear

wheels" is included as "indicative of the number of wheels,

tires, brakes, and associated hardware requiring repair

action and maintenance attention" (210). "An increase in

the number of wheels results in an increase in [subsystem]

replenishment spares costs" (210).

Additionally, the "Mass times Velocity Squared" (MVSQ)I

is included as a measure of the energy absorption

requirement placed on the landing gear. "An increase in the

MVSQ results in abuse to the wheels, tires and brakes.

Consequently, an increase in replenishment spares costs will

result" (210).

4) Flight Controls CER: The "number of flight

control actuators" (NOACTS) is incluled as "an indicator of

the overall complexity of the flight control subsystem . . .

[and] one of the largest contributors to the cost of spares"
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(210). This increased complexity is said to cause

"increased removal activity of the major flight control

components" and thus an increased spares requirement (210).

It isn't clear if this means complex systems have a greater

number of parts which can fail or if it takes more work to

remove the components causing more wear and tear that is

maintenance related.

The "takeoff gross weight maximum" (TGWMAX) is included

as "a measurement of ai:-craft size and, as such, is an

indicator of flight con:rol size. The larger aircraft

requires more flight co:itrol components and, as such, more

spares" (210).

5) Engine Ins-.allation CER: Again, TGWMAX is

included as a measure o' aircraft size. Size is said to be

proportional to spares -ost. The "engine pressure ratio is

a measure of engine sophistication and, as such, has an

influence on the engine installation component requirements"

(211) [The source text describing the subsystem CERs and

their supporting logic did not specify what type of "engine

pressure ratio" is used]. An increase in the number of

installation components means that more parts are available

to fail and therefore more spares should be required.

6) Environmental control System (ECS) CER: "Hours

per mission" is included as a measure of aircraft and

component usage. "Maintenance cost increases with aircraft

utilization" (211).
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"Fuselage Volume" (FLGVOL) is said to measure the "ECS

size and complexity relative to the amount of cooling

capacity" (211). As this variable increases, so does the

size and number of ECS components resulting in increased

spares requirements.

7) Electrical CER: The "number of generators" is

included as a measure of the "size and number of components

in the electrical generating and distribution system" (212)

Again increased size equates to increased spares

requirements.

The "cargo floor area" is a measure of the space

requiring electricity. "An increase in the useable floor

space results in an increase in size of the electrical

subsystem and consequently replenishment spares costs"

(212).

8) Hydraulic/Pneumatic CER: The LENSPN and "number

of hydraulic pumps" are included as "measures of the size

and complexity of the aircraft hydraulic system and

indicative of the number of supply circuits and components

required" (212). Again, as size and complexity grows the

spare requirement is also said to grow.

9) Fuel System CER: The LENSPN and "fuel system

weight" are included as "measures of aircraft size, and

hence, fuel system size" (213). Increased size relates to

increased spares requirements.

10) Cargo Handling CER: "Cargo weight" and "cargo

volume" (CARVOL) are included as measures of the cargo
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handling subsystem's load capacity. As the number and size

of cargo handling equipment increases, so does the number of

spares required.

11) Auxiliary Power Unit CER: FLGVOL and CARVOL

"are sizing factors relative to the amount of air

conditioning to be supplied by the APU" (213). As these

variable increase, "larger and more complex" APUs must be

used and thus, an increased requirement for spares (213).

12) Avionics CER: "Total KVA" and "avionics black

box weight" were included as measures of the avionics

subsystem size and complexity. Increases in these variables

are said to result in increased spares costs.

13) Engine CER: "Sea level maximum mach" and

"thrust per engine" were considered measures of engine

complexity. "The more complex the engine, the more costly

are the spares, therefore, an increase in these parameters

will result in an increase in the cost of spares" (169).

This CER was also used for the fighter/attack/bomber class

of aircraft's engine CER.

Rather than detailing each subsystem's independent

variables for this second class of aircraft, the following

text describes only those cost drivers which weren't already

mentioned above.

The landing gear CER for this class included "takeoff

gross weight clean" as a cost driver. This was said to be a

measure of the "kinetic energy absorption capability and

size of the landing gear components," and because of this,
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it directly related to tire, brake and wheel wear, and thus

the need for more spares.

The engine installation CER included "engine thrust to

weight ratio" as "a degree of sophistication and size [of

what the documentation does not say] in relation to the

aircraft performance capabilities" (166). Increases in

these factors are said to lead to increased maintenance

activity and thus, the need for more spares.

The environmental control system CER includes "BTU per

hour" as a "measure of the cooling capacity and the size of

the ECS" (167). Increased size, once again, equates to a

need for more spares.

"Avionics installation weight" is used in both the

electrical CER and the Avionics/Armament CER. This weight

is said to be a measure of the size and number of components

in the avionics subsystem. An increase in this variable

leads to increased spares requirements for both subsystems.

The fuel system CER uses "internal fuel weight" as a

measure of the size and number of fuel system components.

The greater the number of parts, the greater the number of

spares required. Additionally, "maximum mach" is used as "a

degree of sophistication required of the fuel system" (168).

Increased sophistication is said to require more parts and

thus more spares.

The discussion of independent variable selection

contained in this model's documentation needs additional

work. In many cases it isn't clear why one measure of size
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is used in one CER and another size measure is more

appropriate for another CER. It some cases it appears as

though the authors had to stretch their imagination to come

up with the logic behind their cost drivers. This might be

attributable to the fact that step-wise regression was used

to identify the cost drivers. The logic might have been

developed after the selection of cost drivers.

Model #3: Air Logistics Early Requirements Technique

(ALERT1. Unless stated otherwise, references in this

subsection will come from a 1989 report entitled Air

Logistics Early Requirements Technique (ALERT) FY90-94

Program Objective Memorandum (POM) Forecast. The authors

were Adrienne Rexroad, Robert Lucas, and Larry Collins.

Developer(s): AFLC/MMM, 1984.

Model Purpose: ALERT has been used since 1984 by

HQ AFLC as the starting point for developing BP15 aircraft

peacetime spares Program Objective Memorandum (POM) inputs.

The POM is the Air Force's long range budget requirements

document. ALERT is the "starting point" because the output

from ALERT is scrubbed by the BP15 Program Manager prior to

its submittal (1).

Model Algorithm: Sixteen separate CERs are

developed with straight linear regression to predict the

first year of POM requirements for thirteen different weapon

systems, the F-100 engine, common spares (to multiple weapon

systems), and an "other" category. This first year's

estimate is then used as historical input for the next four
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years' predictions--a regression technique which is referred

to as "bootstrapping." (2).

Data Inputs and Sources: The dependent variable

data used were the requirements submitted in the last Budget

Estimate Submission (BES). There were a total of four

independent variables used (not all at once) in the CERs: 1)

Mission Design Series buy requirements from the D041

"Recoverable Consumption Item Requirements System," 2)

Average Fleet Value, as calculated by USAF/AC, 3) the

reciprocal of the estimated Present Fleet Age, also provided

by USAF/AC, and 4) Chronological Year.

Assessment: Only six of the sixteen weapon system

class CERs hac adjusted R2 values exceeding .7 and only one

class exceeded .75. The BP Manager scrub that followed

subsequent to the ALERT run changed the input values

further. The BP Manager is critical of the D041 input data

since it uses the June data run (a quarter not updated by

three of the five ALCs). He also questioned the logic of

using the fleet value as a cost driver. USAF/AC based their

estimate of fleet value on projected future flying hour

programs which decrease over time. The fleet values,

therefore, decrease over time. The spares requirement,

however, logically gets larger as the fleet gets older (7).

A 1988 validation study of the ALERT model compared the

scrubbed ALERT forecast to three other forecasting

approaches: 1) cost per flying hour factors, 2) inflation

growth, and 3) unscrubbed, "pure" ALERT forecasts. This
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analysts concluded that the scrubbed ALERT forecast was the

most accurate approach and, in fact, this technique

predicted (in 1984) 1987 spares requirements within two

percent of the actual obLigations recorded that year

(Rexroad and Collins, 1938:8). However, it should be noted

that this "two percent" accuracy was for the total

replenishment spares forecast. Within the individual CERs,

several of the estimates missed the mark considerably. The

B-52 estimate ($148.2 million) was $109.2 million higher

than the funds obligated. The F-16 estimate ($372.2

million) was $225.6 million higher than actuals and the F-

100 engine estimate ($393.4 million) was $232.4 million

lower than the actual obligations (Rexroad and Collins,

1988:7-8). The remarkable "accuracy" of this model,

therefore, could be nothing more than the Air Force

obligating everything they had to obligate (provided as a

result of the ALERT forecast), without saying anything about

whether real requirements were met.

The validation study pointed out several concerns with

the model. A chi-square test was performed on all four

estimating techniques being evaluated and it was determined

that "none of the forecasting approaches are statistically

close to the actual obligated dollars" (Rexroad and Collins,

1988:9). Additionally, the authors concluded that although

a high correlation existed between the dependent variable

and the independent variables in their data set, they found

no causality and therefore had no "complete 'intuitive'
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interpretation of why past relationships exist" (Rexroad and

Collins, 1988:5). The authors recommended that additional

analysis be performed to "include variables like actual

flying hours, type of mission, and the expected occurrence

of a major modification to predict cause and effect

relationships" (Rexroad and Collins, 1988:10).

A 1988 RAND report (see next model below) provided a

brief evaluation of the ALERT methodology. One additional

shortcoming which it identified is that the model does not

"correct for inflation by converting dollar estimates into

constant dollars" (Crawford, Lansdowne, anl Finnegan,

1988:8).

Model #4: Oversight of Resources and Capability for

Logistics Effectiveness (ORACLE). Unless stated otherwise,

all references in this subsection come from a 1988 RAND

report entitled, ORACLE and Requirements Forecasting, Vol.

II: Predictinq the Peacetime Spares Requirement. The

authors are Gordon B. Crawford, Z.F. Lansdowne, and F.W.

Finnegan.

Developer(s): RAND Corporation (see authors

above).

Model Purpose: ORACLE is "a methodology developed

to relate dollars expended on recoverable components to the

goals set in the Planning, Programming, and Budgeting (PPB)

process" (1). The ORACLE methodology was developed with

three hypotheses in mind:
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1. A constant requirement methodology and the
converting of prices to constant year dollars with
reasonable inflation indices would make the BP15
requirement more stable and more readily predictable.

2. Breaking the total requirement for a weapon system
into several federal stock class (FSC) groupings and
analyzing the regression of each group on the several
explanatory variables would permit identification of
certain groups that do not regress well and hence
deserve expert attention and judgement to predict their
requirement.

3. Removing these 'hard to predict' groupings for
individual attention would then make the remainder of
the expenditure substantially more stable and easier to
predict. (2)

Model Algorithm: CERs were developed for three

weapon systems (F-15, F-16, and C-5). Ten years of data

(1975 - 1984) was used for the C-5. In the case of the F-15

and F-16, the data bases were reduced to seven years (1978 -

1984) and six years (1979 -1984) respectively. The

modelers felt that these aircraft were too new to the

inventory in the mid-70s and that this early data would not

accurately predict the requirements for mature weapon

systems.

The modelers performed what they called "a loose

approximation of what others might call a regression

analysis" (19). They say this because they did not believe

that the residuals in their analysis would be "normally

distributed with a precisely described covariance matrix"

(19) [see regression assumptions 5 and 6 on page 20] and

they took "repeated and excessive liberties" in such

subjective areas as "rejecting outliers and replacing their
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values" (22). The modelers claim that if the CERs did not

perform well under these relaxed conditions, they would

perform even poorer using the stricter linear regression

assumptions (20).

The dependent variable being studied for each weapon

system was the marginal annual cost of the replenishment

spares requirement. Given the small size of the F-16 data

base, the authors limited the number of coefficients in any

one CER to two (assumably to preserve degrees of freedom).

The independent variables evaluated included the average age

of the fleet, flying hours and the value of the fleet.

Little explanation is given for why "value of the fleet" is

used other than the Navy has "long used it to predict Naval

air requirements" (22). The "average age of the fleet" is

included to account for the "bath tub" theory of reliability

(described earlier in the RAND Model evaluation) (23). The

"Flying hours" variable was included to account for the fact

that "many spare parts fail as a result of repeated physical

stress or wear that is a direct result of flying, taking

off, or landing" (24). "Flying hours" were used in lieu of

"aircraft sorties" due to better availability of flying hour

data and the modelers' contention that, when plotted, a

curve describing sorties per year "tends to look like curves

that describe flying hours per year" (24).

As stated earlier, the modelers wanted to determine if,

by separating hard to predict FSC groupings, they could

improve their ability to predict requirements for the
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balance of the weapon system's requirements. In other

words, they wanted to separate the "art" (hard to predict

groupings requiring expert judgement) from the "science"

(remaining groupings) in spares requirements determination

(25). To accomplish this, separate CERs were developed for

fourteen separate FSC classes for each weapon system, in

addition to the overall weapon system CER. Those FSC

classes which failed to show a strong statistical

relationship to the independent variables were then removed

from the overall weapon system data base end the impact on

its CER was noted.

Data Inputs and Sources: The dependent and

independent variable data used in this analysis (discussed

above) was taken from the D041, "Recoverable Consumption

Item Requirements System."

Assessment: The idea of separating "hard to

predict" components from the total weapon system data base

is an interesting and logical idea. According to the

modelers' conclusions, they did find support for their

second hypothesis that this sort of separation could be

accomplished. Some of the FSC groupings exhibited "wild

swings," and the modelers felt that they would be difficult

to predict no matter what independent variables were used

(41). Unfortunately, the exclusion of these FSC groupings,

according the modelers, showed no marked improvement in the

ability to predict requirements for the remainder of the FSC

groupings. The first hypothesis (concerning anticipated
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improvements garnered from a constant requirements

methodology and constant year dollars) was also not

supported. Additional research would have to be conducted

to determine if a larger data base or different independent

variables would impact these results.

Model 5 Levine and Horowitz Study. Unless stated

otherwise, references in this subsection will come from a

1989 study conducted by Daniel B. Levine and Stanley A.

Horowitz ent tled, Predicting the Cost of Initial Spares.

Model Purpose: The purpose of this study was to

develop a CER for predicting initial spares costs. The CER

would benefit service and OSD budget planners in laying in

long range budgets for new aircraft many years before their

deployment (1).

Model Algorithm: The authors used linear

regression to test hypothesized relationships in data from

twenty one Navy and Air Force aircraft. The dependent

variable was the total obligation authority (TOA) for

procurement of initial spares during the life of the weapon

systems' programs. Actual obligation data is used from 1972

- 1988, and TOA is included through 1994. Aircraft mission

design series (MDS) selected were limited to those MDS for

which data was available for the entire program (i.e., the

program started after 1972 and will finish before 1994).

Independent variables evaluated included weapon system cost,

empty weight, maximum speed, total program procurement
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quantity, and dummy variables to control for the aircraft

mission (2).

Three criteria were established for selection of the

final CERks): .) ; t"e signs for the cost driver

coefficients, 2) high R2, and 3) high t-statistics (2).

This study resulted in the development of four CERs which

met the criteria.

Data Inputs and Sources: The dependent variable

data came from the FY 1989 historical procurement annex

covering the fiscal years 1972 - 1994. The independent

variable data (discussed above) came from "Standard Aircraft

Missile Characteristics" (Air Force Guide No. 2) and Jane's

All The World's Aircraft (5).

Assessment: The use of actual obligations as the

dependent variable carries with it all the uncertainties

discussed previously in the subsection entitled "data

problems" (e.g., "what was spent" is a proxy for "what

should have been spent," some initial spares requirements

were purchased with replenishment spares budget authority,

etc.).

The authors provided no discussion of the logic behind

the cost drivers selected other than to say they anticipated

a positive relationship with the dependent variable. The

two CERs with the highe;t R2 values both involved the single

independent variable, "weapon system cost." One CER was

linear and the other involved a logarithmic transformation

of the dependent and independent variable. The authors made
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no comment as to which CER they felt most accurately

described the true relationship. This, they said, depended

upon "the analyst's best intuition about the underlying

relationships" (8). The next model included three linear

independent variables--procurement quantity, empty weight,

and maximum speed. The final model included these same

variables plus two dummy variables to distinguish attack,

fighter, electronic, and bomber aircraft from cargo and

tanker aircraft (8). Again, there is no discussion

concerning which relationship the authors preferred, and no

discussion of any model diagnostics performed at any time

during the study.

Literature Review Sumnmary

Throughout the course of the literature review, one

factor stood out--and that was the great number of

difficulties associated with developing spares CERs. Upon

concluding their attempts to develop a better spares CER,

RAND modelers summarized their feelings: "In short, the

problem is extremely difficult. That was clear before, but

it is even clearer now" (Crawford, Lansdowne, and Finnegan,

1988:vi). Data selection poses numerous problems for model

developers. Assuming one can even locate a data source, one

is often disappointed to find that: 1) the data is at the

wrong level of aggregation, 2) the data covers a different

time span than required (e.g., calendar year instead of

fiscal year), 3) there are strategic holes in the data, and
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4) the data is discredited by numerous other factors (e.g.,

the obligation data is influenced by political

considerations, is hard to track to spares usage due to its

multi-year availability, etc.).

An examination of existing spares CER based models

provided ideas for cost driver candidates but little comfort

that a statistic .1ly significant model would be found. The

models were weak in this area (i.e., poor R2's, poor mean

standard errors, etc.). The model source documents were

also weak in explaining the underlying logic behind their

models. One had no idea, for the most part, if the

relationships found were correlational or causal in nature.

Additionally, the model source documents provided little, if

anything, in the way of model diagnostics descriptions.

Although the author cannot guarantee that he will

develop a statistically significant model, an attempt will

be made to improve upon (relative to the models evaluated in

the literature review) the documentation of the model.
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III. Methodologyq

Introduction

The general overview of the entire cost estimating

process (research objective number one) and summary-level

description of current O&S cost models applicable to spares

(research objective number two) are p urely descriptive in

nature. This chapter will explain the methodology used in

support of research objective number three.

This third objective involved developing a parametric

model for predicting recoverable spares costs. No initial

spares CER was attempted due to a lack of practically

accessible data, as identified in Chapter II. The

replenishment spares model was accomplished in two parts: 1)

a'multiple independent variable (MIV) CER relating

condemnation costs to aircraft physical and performance

characteristics, and 2) a single independent variable (SIV)

CER comparing replenishment spares requirements to

condemnation costs. This second part is, in essence, part

of an attempt to develop a demand volatility factor. The

predicted condemnation spares cost must be multiplied by its

associated demand volatility factor to arrive at the total

replenishment spares estimate. Both MIV and SIV models were

developed with linear regression using SAS statistical

analysis software (maintained on the Air Force Institute of

Technology (AFIT) VAX computer system). The data used to

develop the condemnations CER is at the "MDS" level of

58



aggregation; while the demand volatility factor data is at

the "MD" level. This chapter provides a detailed

explanation of the methodology used to create both models,

beginning first with the condemnations CER and ending with

the demand volatility CER.

Condemnations CER Development

The following subsections discuss the specific

procedures which were used to develop and validate the

condemnations spares model. General explanations are given

for some terms and the reason for using techniques are

explained, but detailed explanations of the actual

regression techniques are not. Readers who are unfamiliar

with linear regression will need to refer to a regression

text for further details. The techniques mentioned below

are from the COST 671 (j)efense Cost Modeling.) and COST 672

(Model Diagnostics) cou:ses taught at AFIT (Murphy, 1990-

1991).

Model Identification. The first step in developing the

condemnations CER involved identifying logical cost drivers.

This process is known as model identification. In order to

identify the underlying causal relationships which drive a

cost estimate, one shouLd become familiar with the system(s)

for which the cost estimate is being developed. Given the

time constraints of thi3 thesis, this task was accomplished

through a review of previous spares CER work and

consultation with spares experts. While one can never be
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sure of capturing all the cost drivers, statistical measures

(which will be discussed shortly) can be used to determine

what portion of the total error is captured by the model.

A specific consideration under the general "model

identification" heading is testing for interaction effects

and indicator variables. Both were examined in the model

development. If one changes the value of an independent

variable and the resulting change in cost is dependent upon

the value of another independent variable, there is an

"interaction effect" between the independent variables. For

example, if the change in spares cost related to a change in

an aircraft's "maximum speed" also depends upon the "empty

weight" of the aircraft, there is interaction between these

two variables. "Maximum speed" and "empty weight" were in

fact tested for an interaction effect, along with "maximum

load factor" and "aircraft length plus span." This was done

by multiplying the variables against one another in each of

the above pairs. The resultant products became new

candidate independent variables.

Indicator variables are used to determine if the sample

population can be divided into separate classes based upon

qualitative differences. Indicator variables were included

to determine if spares costs are related to the following

categories of aircraft: 1) fighter, attack, fighter-bomber,

or trainer aircraft; or 2) bomber, tanker and military

transport.

60



Model Specification. Closely related to identifying

the cost drivers is the next step--hypothesizing logical

relationships between the dependent variable (cost) and the

independent variables (cost drivers). This process is known

as model specification. For example, "is the relationship

linear or non-linear?"

There is no simple way to quickly develop a CER from a

list of cost driver candidates. Knowing which variables to

include in the model and what relationships to specify

requires a great deal of professional judgement. One should

ensure that a model makes logical sense. For example, a

model may use aircraft weight as a cost driver for

recoverable spares. The logic behind this driver could be

that increased weight implies more aircraft parts and

therefore more spares are required. However, the aircraft

for which spares costs are being predicted may be heavy

because it is built with heavier, sturdier materials. In

this case, the model logic fails because the heavy aircraft

weight is not due to more parts. Rote application of a CER,

without professional judgement, can lead to erroneous

estimates.

When numerous variables are identified as potential

cost drivers, one must do one's best to determine which

variable or set of variable:; constitute the most logical

CER. The more candidates for inclusion there are, the

greater the numbe: of possible combinations that one is

tempted to evaluate. The danger here lies in the fact that
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simply by testing a large number of dlifferent candidate

variables using different assorted transformations, it is

likely that one can develop a statistically significant

model merely by chance. Additionally, with no logical

expectations concerning the underlying causalities of the

variables, one has no basis for determining if a

statistically significant model is based upon correlation

between the dependent and independent variables, as opposed

to causality.

Given the pitfalls associated with arbitrarily testing

different combinations of variables, the author attempted to

identify expected relationships prior to running the models

themselves. It seemed logical that sizing variables such as

aircraft "empty weight" and "length plus span" and the

annual utilization factors, "flying hours," "sorties,"

"landings," and "number of active aircraft in MDS

inventory," would have direct linear relationships to

condemnation costs. No plausible rationale could be thought

of for either an inverse relationship or even a direct

relationship with a changing slope.

For "intensity" of utilization factors such as "flying

hours per aircraft," "landings per aircraft," and "sorties

per aircraft," and performance/techr.ical complexity factors

such as "thrust per engine," "maximum speed," "maximum climb

rate at sea level," "maximum load factor," etc., it was felt

that condemnations costs would increase at an increasing

rate as these factors increased. This type of relationship
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is typically tested with quadratic transformations and/or

logarithmic transformations of both the dependent and

independent variables ("log-log" transformations).

The "flying hours per sortie" factor (mission profile

factor) was thought to cause condemnation costs to increase

but at a decreasing rate. Given that an aircraft is

performing the same type of mission continuously, performing

it for longer periods of time will result in increased wear

and tear on the aircraft. However, after a point, longer

m:.ssions begin to reflect different types of missions. A

long ferry mission may not cause as much wear and tear as a

shorter mission practicing "touch and go's." This type of

relationship is typically modeled by raising the independent

variable to the ".5" or "-1" power, a log-log

transformation, or a logarithmic transformation of the cost

driver alone.

The aircraft "flyaway costs" is expected to have a

direct relationship to condemnations costs. More expensive

aircraft means more expensive parts and it is felt that this

will outweigh any reduction in condemnations due to improved

reliability (which may drive the higher acquisition cost).

There was insufficient evidence to judge whether this should

be a linear relationship or not.

Data Normalization. Once the hypotheses to be tested

were developed, the raw data was collected and then

normalized. This was required to ensure that differences in

costs between different years was not merely related to
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inflation effects. The dependent variable data obtained

from the Weapon System Cost Retrieval System (WSCRS) was

already inflated to a common base yezr--FY91. The

replenishment spares annual requirements used in the demand

volatility analysis had to be inflatcd to FY91 dollars also.

Linear Regression. The next step involved actually

using SAS to specify the relationship between the dependent

and independent variables in mathematical terms. SAS fits

data to a regression line using the method of least squares

best fit.

Each regression line is expressed in the following

equation form:

Y = BO 1" B0Xil + B2Xi 2 + '" + B-IXi,P-1 + et (2)

(Neter, Wasserman, and Kutner, 1989:229)

where

B0, B1,...,B,_, are parameters Xii, Xi2, .. .,,p.| are
known constants

el are independent N(O, a2 ) i = 1,...,n

SAS can only work with linear relationships and so cost

drivers with anticipated non-linear relationships were

transformed (e.g., setting the independent variable equal to

itself raised to e power) so that the relationship would be

linear as transformed.

The initial SAS runs were made using selected logical

linear independent variables. Additional runs were then
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performed based upon what logically made the most sense and

the results of this initial analysis.

The SAS forward stepwise regression function evaluates

how the model statistics change as SAS adds each possible

independent variable one at a time to the model, starting

with the most significant variable. This function does not

guarantee the best model, however, and it was used only as a

check against the final model developed.

Model Validation. Having stated that developing a CER

is not an easy task, it is appropriate to discuss the

diagnostics which can be performed to check a model's

internal validity. Each SAS regression run provides an

analysis of variance (ANOVA) table with many of the

statistics necessary to evaluate the model (e.g., R2,

Adjusted R2, F-Value, etc.). The format of this table is

provided in Table 2.

Numerous factors must be evaluated before a final CER

is selected. One simple check is to examine the signs of

the parameter estimates from each ANOVA table to see if they

are logical. For example, a negative sign would be logical

if one had reason to believe that the relationship between

the cost driver and cost was inverse.

Given a logical sign for the parameter estimate, a

number of statistics from the ANOVA table can then be

examined together to determine the overall predictive

strength of the model. The coefficient of determination

(R2) tells one the percentage of total squared error
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TABLE 2

ANOVA Table Format (SAS)

Source Degrees Sum of Mean
of of Squared Squared
Error Freedom Error Error F Value P Value

Model P-i SSR= MSR=SSR/df MSR/MSE

Error n-P SSE= 1 ) 2 MSE:SSE/df

Total n-i SST= (Y1-Y) 2 MST=SST/df

Root MSE * R-squared *
Dep Mean * Adj R-sq *
C.V. *

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=O
Prob>Tl
Intercept * * * *
Driver#i * * * * *
Driver#2 * * * * *
Driver#P * * * * *

Where

= the ith fitted value on the regression line

= the mean of the observed values in sample set

Y1 = the ith observation from the sample set

P = the number of parameters in the model

n = the number of observations in the sample set

accounted for by the regression line. For this thesis, the

general rule of thumb is that one doesn't want to accept an
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R2 value less than 70%. A value of 80% or greater was

looked for in the final model. This statistic can be

misleading, however, in that it can be artificially driven

up by increasing the number of independent variables whether

they are true cost drivers or not. For this reason the

adjusted R2 was compared to the R2 value. If the

two values were not within 20% of one another, it was

assumed that insignificant variables were impacting the R2.

The F-test was used to check the statistical

significance of each overall model evaluated and the t-test

was used to check on each individual independent variable's

significance given that the other independent variables were

included in the model being tested. The probability values

associated with the F and t-values were used to determine at

what level of confidLence the variables could be considered

significant. Again, 70% is a typical rule-of-thumb minimum.

An 80% or better value was sought in the final model.

The P-Value was looked at to determine "the smallest

significance level at which the null hypothesis can be

rejected" (Newbold, 1988:339). Since one wants to reject

the null hypothesis (because one believes a relationship

exists to begin with), obviously the smaller the P Value the

better.

The coefficient of variation (CV) and prediction

intervals (SAS has functions that can print out the 95%

prediction limit bounds and, for SIV models, plot these

bounds around the regression line) were used to examine the
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model's external validity. The CV provides approximately a

70% prediction interval (estimate plus or minus CV) at the

center of the data. If a natural logarithmic transformation

of the dependent variable was used, the CV was replaced by

the root mean squared error (MSE) (which equates to the CV

in a natural logarithmic transformation). Since the CV (o-:

root MSE) gives one a rough idea of how well one is

predicting at the center of the data, where the bounds are

the smallest, a large CV can end the analysis because one

knows that it's not going to get any better. If the CV is

small, however, the prediction interval analysis can be used

to examine how well the model predicts over the entire

sample data set. The larger the prediction intervals, the

more uncomfortable one becomes over the model's predictive

capability. if the prediction intervals seem to widen

dramatically at the outer edges of the sample data, this

will be taken as an indication that the model may only apply

to the range of the current data set.

In order to identify which data points are in the

center of the data and which are at the outer edges, one can

examine the width of the prediction limit bounds for each

data point. Those data points with the smallest prediction

intervals should be relatively close to the center of the

data, while those with the largest prediction intervals

should be the farthest from the center of the data. When

conducting this analysis on a model with a log-log
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transformation, one should examine the prediction intervals

in logarithmic space as opposed to arithmetic space.

In addition to the 95% prediction intervals piovided by

SAS, '70%, 80% and 90% prediction intervals will also be

derived (for the data point closest to the center of the

data) to determine the impact of changing confidence levels

upon the model prediction intervalL. These bounds will be

plotted around the predicted value to graphically depict how

the bounds increase as the alpha level decreases.

None of the statistics described above, taken alone,

can tell you how "good" the model is. hey all must be

considered together to evaluate the various models because,

for example, R2 can be artificially inflated at the expense

of the model's significance. Additionally, these statistics

are only meaningful if one can assume that the model is

properly identified and specified. The diagnostics,

therefore, do not stop with these statistics.

Residual Plots. Another check is to see if the

models are properly specified. SAS allows one to plot the

residuals (deltas between the observed and predicted

condemnation costs) against the independent variable data.

Theoretically, one can examine these plots for patterns in

the data and if all the residual plots appear to be

completely random, then one may assume that the model is

properly specified and no further action is required. If

even one plot shows a pattern, this indicates that the data

is not linear as transformed and thus a (different)
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transformation is required. If and when this is the case,

two other SAS functions can be used in combination with

these basic residual plots to determine which

transformations are required. Partial regression plots and

residuals plotted against important independent variables

omitted from the model can also be used to identify

necessary transformations. This "theoretical" procedure was

not followed in this thesis, however, because patterns in

the data were expected but not found. Rather than stopping

at this point, the author went with his professional

judgement and continued with the partial regression plots

and omitted variable plots, hoping to identify necessary

transformations. Each time a variable was transformed, the

process was started all over with plotting the residuals for

every independent variable and checking for patterns in the

data. Additionally, transformations which made logical

sense were evaluated, even in the residual plots did not

indicate that the transformations were necessary.

Outliers. Still another check involves

identifying outliers in the sample data. SAS has a function

which prints out leverage values (measurements of an

observation's distance from the center of the data) which

can be used to identify outliers with respect to X. If a

leverage value (hii) is greater than twice the number of

parameters (P) divided by the number of data points (n),

than the data point is an outlier. If P is large relative

to n, then this formula's value may exceed one. If this is

70



the case, the rule of thumb value is switched to .5 for the

maximum acceptable hii.

"Internally studentized residuals" were used to

determine outliers with respect to Y. The following

equation can be used to produce internally studentized

residual values:

e / (MSE(I - hii)) '5  (3)

If this value exceeds the t-value associated with 10% alpha

and n - P degrees of freedom, the data point is an outlier.

SAS has a function which prints out the internally

studentized residuals

There are numerous possible causes for these extreme

values in the data:

1) The outlier datE. point belongs to a different
population.

2) The independent variable data includes measurement
error.

3) There was some unique major event with significant
impact on the data.

4) Significant independent variables are excluded from
the model.

5) The data point just so happens to fall in a tail of
the data distribution.

6) The model is imlroperly specified.

7) The error terms come from non-normal distributions.

What one decides to do about the outliers depends upon

their cause(s) and theii influence. If one determines that

an outlier belongs to arother population, it can be thrown
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out. If there are an insignificant number of outliers

compared to the sample size, they can be thrown out. If the

outliers are needed, due to the sample size, and they are

non-influential, they can be left alone. If they are needed

and influential, an attempt must be made to adjust the

outliers to minimize their effect on the model.

To determine if an outlier is influential, SAS produces

three measures of influentiallity: 1) DFFITS, 2) DFBETAS,

and 3) Cook's Distance.

DFFITS values measure the influence of "case i" on the

"fitted value" of condemnation costs Rnd it can be

calculated with the following equation:

(DFFITS)i = dzi (hii/(l - hii)) "5  (4)

(Neter, Wasserman, and Kutner, 1989:401)

The rule of thumb for this equation is that the absolute

value of DFFITS may not exceed one for small to medium sized

data sets and 2(P/n) '5 foi: large data sets.

DFBETAS values measure "the influence of the ith case

on each regression coefficient bk" and can be calculated as

follows:

(DFBETAS)bk = bk - bk(i) / (MSE(i)C kk 5  (5)

(Neter, Wasserman, and Kutner, 1989:402)

where

Ckk is the kth diagonal element of (X'X)"I
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The rule of thumb for DFBETAS is that its absolute value may

not exceed 2/(n) 5.

Cook's Distance is "an overall measure of the combined

impact of ith case on all of the estimated regression

coefficients" and it can be calculated with the following

equation:

Di = (b - bl 1 )'X'X(b - b(i)) / pMSE (6)

(Neter, Wasserman, and Kutner, 1989:403)

where

b is the vector of estimated regression coefficients
obtained when all n data points are used.

b(i) is the vector obtained when the ith case is

omitted.

The rule of thumb for Cook's Distance can be found by

comparing it to the F distribution value for the fiftieth

percentile with numerator degrees of freedom equal to the

number of regression coefficients (p) (including the

intercept term) and denominator degrees of freedom equal to

n - p. If the Cook's Distance value exceeds the F

distribution value the point is considered an influential

outlier.

Multicollinearity. Multicollinearity is a

violation of the assumed independence between the

independent variables. As multicollinearity is introduced

to a model the variance of the regression coefficients

become very large and the coefficient values themselves

become highly unstable. They may even take on the wrong
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sign. As a result, the predicted coefficient values are

more likely to be further from the t.ue population parameter

values and the variables' t-values may get smaller.

SAS provides several functions to test for

multicollinearity in addition to the symptoms mentioned

above. Pairwise correlation matrices, tolerance values and

the SAS COLLINOINT function can be used. A pairwise

correlation matrix shows the collinearity between two

variables. The tolerance values depict multicollinearity

between a variable and the rest of tie model. The

COLLINOINT function is a good method to use if the number of

cost drivers exceeds four. For each variable a "condition

number" is given. If this number exceeds ten, then a

significant degree of multicollinearity is present. After

identifying a variable with multicollinearity, one looks to

the "variance proportions" listed fcr each remaining cost

driver to determine what variables are contributing to the

multicollinearity.

HeteroscedasticitL. Heteroscedasticity is a

violation of the assumption that thE error terms come rom

distributions with constant variance. To check for th-s

problem, the residuals can be plotted against the expected

value of condemnation costs. If heteroscedasticity is

present, the residual pattern will Either converge or

diverge as the expected condemnatior cost values increase.

If the spread of residuals remains relatively constant, one

may assume that heteroscedasticity is not present.
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Model Predictive Capability. After completing the

diagnostic checks described above, the best linear model,

the best arithmetic transformation model and the two best

log-log transformation models were used to predict the

condemnation costs for an MDS database excluded (for this

purpose) from the original data set. The predicted values

were compared to the actual values to see how well the

models performed.

Model Sensitivity. The best linear model, best

arithmetic transformation model and two best log-log

transformation models were also tested to see how sensitive

they were to changes in the values of independent variables.

This was accomplished by first using the models to predict

condemnation costs for several aircraft MDS. Then new

estimates were created after increasing the value of one

independent variable in each MDS by twenty percent (and

leaving the other independent variable values alone). After

repeating this action for each of the models' independent

variables and noting the impacts on the condemnation costs

estimates, the process was repeated except that the

independent variable values were decreased by twenty

percent.

Small Database Performance. Only those

independent variables dealing with component utilization

changed over time (e.g., sorties, number of aircraft in MDS

inventory). It was anticipated that reducing the database

by replacing these annual variable values (five data points
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for most of the variables) with their MDS averages might

provide a more statistically significant model if the

individual values varied greatly within an MDS. However,

this smoothing effect might also lead to unrealistic

confidence in the models' ability to predict an annual

spares requirement. This database smoothing technique was

tested as the final analysis step.

Demand Volatility Factor CER

The SIV model for demand volatility was developed by

regressing annual replenishment spares requirements data

against annual condemnation costs for the same MD data set.

By restricting the Y-intercept to equal zero, the demand

volatility factor is simply the value of the regression

coefficient from the resulting CER. In order to look at the

statistical measures associated with the CER, another model

w s created with no restriction on the Y-intercept. No

logical explanation was found for any relationship between

replenishment spares and condemnations other than a direct

linear one and therefore no transformations of the

condemnations data were considered.

The demand volatility factor currently used in the HQ

AFLC/FMC Logistic Support Cost model was arrived at by

comparing condemnations with replenishment spares

obligations and simply averaging the various MDS ratios to

come up with a standard factor. As mentioned in Chapter II,

there are numerous factors which discredit the upe of
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obligations data in model development. Using scrubbed

replenishment spares requirements generated by the D041

system is an improvement over the obligation data.

Additionally, using SAS to derive the CER provided

information on the statistical significance of the

relationship--something not found in a straight ratio of

replenishment spares obligations to condemnation costs.

In addition to the SAS produced CER, however, annual

demand volatility factors were calculated by dividing annual

MDS replenishment spares requirements oy annual MDS

condemnations costs. These results were analyzed for any

year-to-year trends in MDS specific demand volatility

factors. Additionally, demand volatility factors were

considered for different mission categories (e.g., fighter,

bomber, etc.).

Before the replenishment spares and condemnations data

could be compared, however, there were several steps which

had to be taken to ensure (as much as possible) that apples

were being compared to apples, and not oranges. For

example, it was already mentioned that the Weapon System

Cost Retrieval System (WSCRS) condemnation data was provided

in FY 91 dollars and that the scrubbed D041 replenishment

spares requirements had to be inflated from then-year to FY

91 dollars. The WSCRS system inflates prior year

condemnations to FY 91 dollars using separate escalation

rates (obtained from AFR 173-13) for engine material,

avionics material, and airframe material (AFLCM 173-264,
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1990:136). Because the replenishment spares requirements

data was aggregated at the MD level, the best that could be

done was to inflate the data using the 3080 Other

Procurement inflation rates (also obtained from AFR 173-13).

Two additional factors had to be accounted for in order

to compare the replenishment and condemnation spares

requirements data sets. First, the scrubbed D041

replenishment spares requirements included separate

categories for "coymon spares," and the F100 and F110 engine

spares (used in the F-15 and F-16 aircraft); while the WSCRS

system had already distributed the condemnations costs for

these categories among the relevant MDS.

The WSCRS system can split out for each MD what percent

of the annual condemnations costs are MD unique and what

percent are common to other MDs. An attempt was made to

distribute the scrubbed D041 replenishment spares "common

spares" category using these WSCRS MD percentages. For

example, if the WSCRS system showed that fifty percent of an

MD's condemnation costs were MD unique, it was assumed that

the replenishment spares requirement for that MD represented

only fifty percent of the total replenishment spares

requirement also, and the remaining fifty percent must be

included in the "common spares" requirements pool. It

became apparent that there was a definitional difference in

the term "common spares" between the D041 and WSCRS systems.

Using the WSCRS ratios suggested that annual common spares

allocations should be significantly greater than the annual
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common spares pools identified. Given no clear

understanding of the exact problem, this methodology was

abandoned.

The HQ AFLC Recoverable Spares Stock Fund Manager

indicated that his office used factors developed by the

Logistics Management Institute (LMI) to spread the common

spares among the various aircraft MD when necessary. The

LMI factors are used, not because they are believed to be

perfect by any means, but because they represent the best

methodology available (Rosenthal, 1991). The LMI factors

provide the percentage of the common spares requirements

attributable to each MD based upon quarterly MD buy

requirements for the common components. The factors change

from year to year and even from quarter to quarter depending

upon the current status and projected buy requirements.

These factors were used to allocate the common spares

to the individual MDs. It should be noted that of the seven

sets of factors used (one for each data year), four sets

were based upon end-of-March databases which estimated MD

percentages for the same fiscal year (e.g., FY88 percentages

were based upon end-of-March FY88 status); while another two

sets used end-of-September status to project percentages for

the following fiscal year (e.g., the FY82 percentages were

developed based upon end-of-September FY81 status). The

final factor set used end-of-March status in FY84 to predict

the FY85 percentages. The fact that different quarters were

used and that, in three cases, the percentages were
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projected a year into the future, introduced additional

uncertainty to the identification of trends between the

fiscal years.

In order to spread the annual FI00 and FII0

replenishment spares requirements between the F-15 and F-16,

annual engine flying hour data from the WSCRS system was

used. This data set divided the total annual engine flying

hours for each engine type between tie two MDs. It was

assumed that the number of engine fliing hours for a

particular engine drove the same ratLo of replenishmen,

spares in the F-15 as it did in the 7-16. For example, if

the F-15 was accountable for seventy five percent of the

total engine flying hours, then it aLso received seventy

five percent of the engine's replenishment spares

requirements pool.

The second factor which had to )e accounted for was the

fact that replenishment spares are pirchased lead time away

from the year in which they will be ictually used (according

to predicted usage). Therefore the °eplenishment spares

requirements should have been compared to the associated MD

condemnation costs lead time away. For this analysis, an

average lead time of two years was used to offset the

replenishment spares requirements and condemnation costs

data sets. For example, FY 1982 replenishment spares

requirements were compared to FY 1984 condemnation costs.

In order to smooth the error introdu-ed by this approach, an

additional comparison was made between the total (all FYs)
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condemnations costs for each MD and the associated total

(all FYs) replenishment spares requirements.

Meeting the Research Objectives

In designing the condemnations cost model,

relationships between cost and potential cost drivers taken

from aircraft performance and physical chara.teristics were

evaluated. It was thought that these relationships could

offer a great improvement over historical factor-based

models using aircraft flyaway costs. They offer insight

into those factors which actually "drive" the cost of

recoverable spares.

The condemnations cost model had to pass the

diagnostics tests described earlier if it was to be accepted

as a valid cost prediction model. in reality, one should

never expect to obtain a "perfect model" that passes all

tests with flying colors. For example, multicollinearity is

a very common issue because the cost drivers being evaluated

are all common to the weapon system for which the model is

being designed. This commonality breeds multicollinearity!

In the end, the analyst must use his or her professional

judgement in compromising between the various diagnostics

results to come up with a reasonable model. The general

criteria which were established as goals for the research

are summarized below:

1) The models' R2 should je greater than or equal to
8 %. Their adjusted R is should be within 20% of
R.

81



2) Confidence levels for the models' significance
should be greater than or equal to 80%.

3) P-values should be relatively small (no rule of
thumb).

4) Prediction intervals should not widen dramatically
at outer bounds of the sample distribution.

5) Residual plots for the cost drivers should be
random.

6) Outliers should be minimal and their influence
reduced through proper data adjustment.

7) The impact of multicollinearity should be minimal.

The demand volatility factor CER was developed to see

if a statistically significant SIV model could be developed

using condemnation costs as the independent variable. The

same seven criteria listed above were applicable to this

model.
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IV. Analysis and Findings

Introduction

This chapter presents the analysis and findings

generated by the procedures described in Chapter III,

"Methodology." The discussion is divided into two main

sections beginning with the condemnation CERs analysis and

ending with the demand volatility factor analysis. Within

the condemnation CERs section, the results from four models

are presented: the best lineai model, the best arithmetic

transformation model, the second best log-log transformation

model, and the best log-log transformation model. The

demand volatility factor section contains both the SAS

generated SIV model results and analysis of spreadsheet

generated demand volatility factors.

Condemnation CERs

The four models in this section were developed using

the procedures described in Chapter III, "Methodology."

Instead of providing a single "best" model, the best linear,

arithmetic transformation and log-log transformation models

are presented. Although evaluations are not presented for

all the models tested in reaching the best model (the second

log-log transformation model in this case), these four

models show how the model performance changed as different

types of transformations were attempted.
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Tables 3 and 4 provide a condensed look at the data

used in the development of these models. While the data in

Table 3

MDS Averages for Annual Data

AVG AVG AVG AVG
ANNUAL ANNUAL AVG ANNUAL ANNUAL

CONDEMN # OF ANNUAL FLY HRS # OF
MDS COSTS MDS FLY HRS PER MDS SORTIES

F15A 47,134,882 317 72,5E3 229.25
F15B 8,797,006 54 13,6C2 253.82
F16A 61,525,807 606 169,8:.5 280.70 122,246
F4D 17,702,001 468 98,6:8 210.75 71,363
F4E 18,968,917 608 145,1 1 238.19 110,123
A7D 12,667,978 389 95,8(04 246.68 59,341
A7K 1,110,592 30 7,5:,3 249.34 2,826
A10A 21,580,794 654 220,953 338.07 105,629
FI11D 14,226,418 85 17,0>5 201.17 7,476
T37B 5,830,023 689 272,111 397.02 196,644
T38A 14,560,060 897 334,2 8 373.80 248,339
B52G 49,673,391 173 65,5t0 378.83 8,980
B52H 20,689,628 96 36,523 378.88 4,842
C5A 41,076,959 77 46,674 606.59 8,537
C130B 3,393,740 94 37,355 397.51 17,466
C130E 14,515,170 296 163,935 556.65 85,617
C141B 48,950,346 268 284,354 1,062.72 68,047
C135A 62,641,457 599 200,259 333.99 45,669
FB111A 13,878,724 69 17,335 252.43 4,832

Table 3 provide MDS averages for variables which change over

time, annual (fiscal year) data was used in the actual model

development. Appendix D provides the data as it was used in

the model development.

Best Linear Model. None of the linear models tested

provided very good statistical results. Among the many

problems identified in the models, a universal issue was

that the criterion for R2 (80%+) was not achieved.
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Additionally, C.V.s were universally high (40%+). Despite

these less than awe inspiring results, the "best" linear CER

is provided for comparison with the transformed models. This

CER is expressed in the following equation:

CONDEMN = -103,454,577 + 149.20001(SORT) + 1,047.701346
(THRUST) + 45,649,536(TOEMPWT) (7)

where

CONDEMN = annual condemnations requirement ($)

SORT = MDS annual sorties

THRUST = maximum thrust per engine (b)

TOEMPWT maximum takeoff weight (lb)/maximum
empty weight (b)

An immediate flaw in this CER is fairly obvious. The

large, negative Y-intercept term allows this model to

predict negative annual condemnation requirements for those

MDS with small cost driver inputs (particularly those with

small TOEMPWT). Additional statistical information can be

found in Table 5, which provides the SAS analysis of

variance (ANOVA) results for this CER.

Looking at the positive attributes of this model, each

of the cost drivers are significant to the 99.9% level and

possess the correct sign. The adjusted R2 is close to the

R2 value, indicating, once again, that all the variables are

making significant contributions to the model and aren't

included simply to drive up the R2. Additionally, the

overall model has a very low P-Value (.0001). Finally, the

model is parsimonious in its selection of cost drivers.

86



Table 5

Linear Model Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 3 2.0833471E16 6.9444903E15 57.013 0.0001
Error 66 8.0391021E15 1.2180458E14
C Total 69 2.8872573E16

Root MSE 11036511.0996 R-square 0.7216
Dep Mean 26944355.4429 Adj R-sq 0.7089
C.V. 40.96038

Parameter Estimates

?arameter Standard T for HO:
Variable DF Estimate Error Parameter=O Prob>!Tl

INTERCEP 1 -103454572 10464398.517 -9.886 0.0001
SORT 1 149.200010 22.42411015 6.654 0.0001
THRUST 1 1047.701346 180.16734946 5.815 0.0001
TOEMPWT 1 45649536 4066074.0692 11.227 0.0001

Unfortunately, the model has a more exterisive list of

negative attributes. Although the model appears to be

significant and parsimonious, its R2 value (.7216) does not

pass the model acceptance criterion. This low value implies

that there may be other sources of error not accounted for

by the model.

The C.V. value (40.96038%) doesn't instill confidence

in the model's predictive accuracy. Since one knows that

the prediction interval will only get wider as one attempts

to predict farther from the center of the data, one would be

justified in stopping at this point. For completeness of

analysis, however, the prediction intervals for every data
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point were examined to record how the interval widths varied

across the data. The smallest bound (using the SAS provided

95% bounds) for the data set was plus or minus $22,249,322.

The largest bound in the data set was plus or minus

$24,161,129. One can infer from these numbers that,

percentage wise, the bounds do not increase dramatically as

one moves from the center of the data to the outer edges of

the data. Unfortunately, the interval was poor to begin

with, so this information provides little benefit.

Another test was performed to determine how the model's

prediction intervals were impacted by varying the level of

confidence used in the model development. Figure I shows

the predicted condemnations cost for the datapoint closest

to the center of the data (i.e., the datapoint with the

smallest prediction interval) and it! associated upper and

lower bounds for four different leves of confidence (70%,

80%, 90%, and 95%).

This figure allows one to see te magnitude of

prediction interval growth as one's .!onfidence level moves

from 70% (plus or minus $11,641,289) to 95% (plus or minus

$22,249,322). If one is attempting .o predict costs for a

datapoint away from the center of th! data, and do so with a

high confidence .evel, one can expect a very large

prediction interval.

The ANOVA based analysis was only the beginning of the

diagnostics performed on each CER. The following

subsections address the complete line of diagnostic checks performed.
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Residual Plots. For each cost driver, data point

residuals were plotted against their corresponding cost

driver values in an attempt to identify necessary variable

transformations. In every case tested, the plots appeared

to be randomly scattered. Normally this is exactly the

results one hopes to achieve, because it indicates that the

variables are properly specified. it was anticipated that

variables such as "number of sorties" and "number of

aircraft" would have direct linear relationships; but for

those variaDles dealing with the intensity of parts
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utilization and parts performance, transformations were

logically expected. Therefore the "random plots" were

attributed to noise in the data and two additional residual

plot tests were performed: 1) partial regression plots and

2) omitted variable residual plots.

For these plots, one hopes to see a pattern in the

residuals, because the pattern (be it linear, or some sort

of non-linear pattern) signifies that the independent

variable does, in fact, have a relationship with the

dependent variable. Two variables were removed from the

"best" linear model because these residual plots show no

patterns in the data. This action was also confirmed by

improvement in the model's significance. The only non-

linear pattern identified is that reproduced in Figure 2.

The partial regression residual plot for tl i variable

"maximum takeoff weight/maximum empty weight (TOEMPWT)"

displays residuals increasing at an increasing rate as the

TOEMPWT values increase. The KC-135 data points at the

extreme right in the graph appear to compose a separate

grouping from the rest of the data points. The nature of

the cargo and mission (aerial refue'ing) for this aircraft

may provide unique design considera.ions that make this MDS

an outlier with respect to the Y variable. The pattern seen

in Figure 2 suggests that TOEMPWT should either be

transformed using a positive exponent greater than one (an

exponent value of two was used) or a log-log transformation

should be used for the entire model.
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Outliers. The KC-135 was not the only MDS with

datapoints that were outliers. SeveIteen of the seventy

data points had studentized residual values which classified

them as outliers with respect to Y (the cutoff value being

approximately 1.296). The MDS represented by these outliers

include the F-16A, the B-52G and H models, the C-5A, the C-

130E, the C-141B and the KC-135A. The leverage values for

six datapoints indicated that these MDS were outliers with

respect to X (the cutoff value being .1143). The MDS

represented by these outliers include the T-38A and the C-

5A.

Additional tests were run to determine how influential

these outliers were. The results varied depending upon the

test used. According to the Dffits test, five data points

representing three MDS (F-16A, C-5A, and KC-135A) were

identified as influential outliers with respect to Y (the

cutoff value being .47804). Though this is a significant

reduction from the earlier figure of seventeen, the number

is still too high. By definition, outliers should represent

an abnormality, not a common occurance. The Dfbeta test

showed that four F-16A datapoints, one T-38A datapoint, two

C-5A datapoints, one C-130B datapoint and three KC-135A

datapoints were influential outliers (the cutoff value being

.2390). The final influentiallity test, Cook's D, failed to

identify any influential outliers.

Typically, one doesn'L expect to see a large proportion

of outliers within a data set. Outliers, by definition,
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should not be the norm. However in this model a large

number are identified. This phenomenon is at least

partially explained by the wide variety of MDS represented

in the model database. In attempting to develop an all-

inclusive CER for aircraft condemnations requirements, noisy

data became a byproduct of the model's generalizability.

After identifying the outliers the next issue was how

to deal with them. According to acceptance criterion number

six, the number of outliers should be "minimal" and their

impact should be minimized through proper data adjustment

techniques. However, in this case the broad population

definition (all Air Force MDS meeting the "mature" weapon

system criteria) made it impossible to simply drop

datapoints for being outside the population. Additionally,

no information was found which supported any type of data

adjustment. Therefore, no action was taken to remove or

adjust the outliers.

Multicollinearity. Both tolerance values and the

SAS COLLINOINT function were evaluated to determine the

impact of multicollinearity upon the model. Neither test

showed any sign of a significant problem. The minimum

tolerance value was .64698110 (with the cutoff being .10)

and the maximum condition number was 2.00869 (with the

cutoff being 10.0).

Heteroscedasticity. When datapoint residuals were

plotted against predicted condemnation values (see Figure

3), a diverging pattern in the data indicated the presence
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of heteroscedasticity. Given the large number of problems

already identified with this model, no attempt was made to

correct for the apparent heteroscedasticity.

Model Predictive Capability. Table 6 shows how

well the best linear model performed in predicting costs for

datapoints outside the development database (see Appendix E

for validation data set).

TABLE 6

Linear Model Validation Test Results

ACTUAL BEST Estimate
CONDEMN LINEAR Divided by

MDS COSTS ESTIMATE ACTUAL

F16A 27,537,555 39,829,790 1.45
F4D 24,151,890 18,676,955 0.77
F4E 24,254,355 21,647,671 0.89
A7D 20,075,237 10,814,153 0.54
A7K 1,560,822 2,477,468 1.59
AIOA 12,012,017 30,443,456 2.53
FI11D 14,831,043 16,865,879 1.14
B52G 43,909,467 36,073,742 0.82
B52H 20,415,995 36,107,341 1.77
C5A 71,036,363 50,403,420 0.71
C130B 4,698,837 (5,223,867) (1.11)
C130E 18,837,210 29,406,501 1.56
C141B 51,264,650 36,080,213 0.70
FB111A 13,471,819 26,930,368 2.00

As one might have guessed from the preceding

discussion, this model did not come through the validation

test with flying colors. As previously identified, the

model predicts "negative" condemnations costs in some

instances. In this case, the FY 1981 C-130B requirement is
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estimated to be negative $5.2 millin when the actuals were

really $4.7 million. The largest a;)solute error (almost $21

million) is seen in the FY 1981 C-5A estimate. Although the

F-4E estimate is within eleven percent of the actual, the

average absolute percentage error among the fourteen

estimates was 63.6 percent.

Model Sensitivity. Each model was also tested

(with the same database used above) to determine how

sensitive it was to changes in the values of its independent

variables. The best linear model was relatively insensitive

to a plus or minus twenty percent change in the "annual MDS

sorties" variable. The average increase in the condemnation

estimate was only 5.6 percent.

Adjustments to the second variable, "thrust per

engine," provided mixed results. If the original

condemnations cost estimate for an MDS is small relative to

the size of the model's parameter estimate, variable value,

or product of the two, it is dramatically impacted

(percentage wise) by the plus or minus twenty percent

adjustment. For example, the A-7K original condemnation

costs estimate was only $2.48 million. The "thrust"

parameter value, multiplied by the value for thrust, was

15.2 million. Increasing the "thrust" variable resulted in

a new estimate that was 2.23 times the size of the original

estimate. Over the entire data set, the average estimate

change attributable to adjusting this variable was 24.3

percent.
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Adjusting the third variable "maximum takeoff weight

divided by maximum empty weight (TOEMPWT)," had the greatest

impact upon the model estimates. For example, the original

C-130B estimate was "negative" $5.2 million. Increasing the

"TOEMPWT" by twenty percent resulted in a new estimate of

$11.8 million. The A-7K estimate increased by 727 percent.

Here once again the relative size of the parameter value

compared to the original estimate made a difference. The

parameter value was 45.65 million compared to an original

estimate of only $2.48 million. The average estimate change

attributable to adjusting this variable was 145.5 percent.

It is clear from these results that the linear model is

extremely sensitive to the TOEMPWT variable. The large

parameter values in this model led to greater percentage

changes in the estimates than the percentages used to adjust

the variables. Appendix F contains the complete results of

the sensitivity test for the linear and arithmetic

transformation models.

Small Database Performance. The final

test run on each model was to reduce the model development

database by replacing annual MDS values (for those variables

which changed over time) with a single MDS average. This

test was performed to etaluate the impact of data smoothing

on the model statistics.

Upon condensing the. best linear model's database, most

of the statistics were actually degraded. The model's F-

Value fell from 57.013 to 12.34. The C.V. rose from 40.96
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to 45.20. Only the R2 improved slightly from 72.16 percent

to 74.01 percent. Additionally, the data smoothing did not

aide in the interpretation of residual plots as had been

hoped. Given that this type of data smoothing did not

improve the model performance, no further analysis was

performed using the smaller data set and this linear model.

Best Arithmetic Model. In general the arithmetic

transformations did not fair much better than the linear

models. In two instances, extremely high R2s (92%+) and

relatively low C.V.s (19% and 24%) were obtained; but both

of these models involved extremely high multicollinearity

and counter-intuitive parameter signs. The "best"

arithmetic transformation includes the same variables as

those in the "best" linear model; but the "maximum takeoff

weight divided by maximum empty weight" variable is squared

(one of the transformations indicated by the linear model

partial regression residual plot). The arithmetic equation

for this CER is as follows:

CONDEMN -50,924,161 + 141.626044(SORT) + 1,140.836199
(THRUST) + 9,469,327(TOEMPWT2) (8)

where

CONDEMN = annual condemnation requirement ($)

SORT = MDS annual sorties

THRUST = maximum thrust per engine (lb)

TOEMPWT2 = (maximum takeoff weight (lb)/maximum
empty weight (lb))2
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A standard quadratic equation was also attempted which

included both the TOEMPWT and TOEMPWT2 terms; but this

model's performance measurements were inferior to the model

using TOEMPWT2 alone.

The transformation of TOEMPWT to TOEMPWT2 did not have

a great impact upon the model's performance relative to the

linear model. Once again, this mode] is capable of

predicting negative condemnation costs due to the large,

negative Y-intercept. The absolute value of the term is

less than one half that of the linear model's Y-intercept

but it still is a large negative number. This model's ANOVA

statistics are also similar to the linear model's. Table 7

provides the SAS ANOVA table.

Table 7

Arithmetic Transformation Model Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 3 2.09961E16 6.9987E15 58.645 0.0001
Error 66 7.8764732E15 1.193405E14
C Total 69 2.8872573E16

Root MSE 10924307.8761 R-square 0.7272
Dep Mean 26944355.4429 Adj R-sq 0.7148
C.V. 40.54396

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob>!T:

INTERCEP 1 -50924161 6306361.7189 -8.075 0.0001
SORT 1 141.626044 21.89513677 6.468 0.0001
THRUST 1 1140.836199 177.95185884 6.411 0.0001
TOEMPWT2 1 9469327 830485.53975 11.402 0.0001
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The good qualities of this model mirror those of the

linear model. Each of the cost drivers are significant to

the 99.9 percent level and they all possess the anticipated

positive sign. The adjusted R2 value is very close to the

R2 value and the overall model's P-Value is very low

(.0001). This model is also parsimonious in its use of cost

drivers.

Unfortunately, this models shares the same negative

ANOVA attributes as well. The R2 is only negligibly higher

at 72.72% (compared to the linear model's 72.16%). The C.V.

value is also only slightly improved (40.54396 compared to

40.96038). The prediction intervals did not increase

significantly from the center of the data ($22,026,530) to

the outer edges of the data ($23,918,251); but like the

linear model, the prediction interval was already so large

in the center of the data that this positive attribute is

inconsequential.

Figure 4 illustrates how this model's predaction

intervals are impacted by adjustments to the level of

confidence used in the model development. The intervals

decrease by almost fifty percent as one moves from the SAS

provided 95% confidence level (plus or minus $22,026,530) to

a 70% confidence level (plus or minus $11,524,720). These

bounds, once again, are only slightly improved (smaller)

over the linear model bounds.
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Residual Plots. The sarne three forms of residual

plots used on the linear model were applied to this model

also. The plots were almost identical. In other words, the

transformation of TOEMPWT did not zig if:Cantly change the

partial regression residual plot which had originally

suggested the need for a transfor-,mation (Figure 2). If

changing TOEMPWT to TOEMPWT2 had been the answer, one would

expect the new plot to show a linear pattern. The second

alternative to squaring the TOEMPWT variable was performing
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a log-log transformation on the entiie model. This type of

transformation is discussed in the n xt model subsection.

Outliers. Seventee -f tht seventy datapoints in

the model development databF- :dent.-fied as outlier

with respect to Y by their cdrid re idual values.

With the exception of one C-5A datapcint being swapped for a

C-141B datapoint, these outlie. were the same as those

identified in the linear wodel ai.alysis. The databases used

to develop the two models are identical, except for the

TOEMPWT values which are squared ii this model; and because

the number of variables are the sF.me, the cutoff values used

in the various outlier tests are also the same.

The different outlier influentiallity tests provided

mixed results. The arithmetic transformation model's Dffits

test identified siv data points as being influential

outliers with respect to Y. The T-38A was the sole addition

to the linear model's list of MDS containing these outliers

(F-16A, C-5A, and KC-135A). The Dfbeta test showed that

four F-16A datapoints, one T-38A datapoint, three C-SA

datapoints, and three KC-135A datapoints were influential

outliers. All but two of these datapoints were identical to

the linear model's results. The Cook's D test failed to

identify any influential outliers.

The outlier problem fo this model was essentially the

same as that in the linear t-,odel. As with all the models

tested, no attempt was made to adjust the data due to a lack

of information supporting appcopriate adjustments.
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Multicollinearity. Both the tolerance values and

COLLINOINT con.ition numbers indicated that there was no

significant multicollinearity problem in the model. The

smallest tolerance value was .665 (with a cutoff value of

.10). The largest condition number was 1.95 (with a cutoff

value of Len).

Heteroscedasti.:it . The datapoint residual versus

pred.cted condemnaticn value plot looked exactl- like the

linear model's corresponding plot (Figure 3). .nce again,

however, no action was taken to correct for the apparent

heteroscedasticity.

Model Predictive CapabLit. Table 8 addresses

the predictive capability of this model. The validation

TABLE 8

Arithmetic Transformation Model Validation Test Results

ACTUAL BEST Estimate
CONDEMN LINEAR Divided by

MDS COSTS ESTIMATE ACTUAL

F16A 27,537,555 39,006,511 1.42
F4D 24,151,890 18,413,977 0.76
F4E 24,254,355 21,467,963 0.89
A7D 20,075,237 10,081,295 0.54
A7K 1,560,822 3,126,105 2.00
AIA 12,012,017 27,935,278 2.33
FI11D 14,8-11,043 17,001,586 1.15
B52G 43,909,467 35,646,512 0.81
B52H 20,415,995 35,708,541 1.75
C5A 71,036,363 51,640,071 0.73
C130B 4,698,837 (4,224,276) (0.90)
C130E 18,837,210 27,056,999 1.44
C141B 51,264,650 35,027,409 0.68
FB11IA 13,471,819 26,212,317 1.95
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data set found in Appendix E was run throbgh the model to

determine how well this model performed.

Just as in the linear model, the C-1 0B stands out like

a sore thumb because the model predicts "regative"

condemnation requirements. Because only living creatures

regenerate their broken parts, this type cf estimate would

be difficult to sell. The largest absolute error was

associated with the C-5A ($19.4 ,itilllon). The average

absolute percentnge error among the lourteen estimates is

60.9 percent--a 2.7 pe'.cent improvement o'er the linear

model.

Model Sensitivity. The ari.thme'ic transformation

model was relatively insensitive to the "lIDS annual sorties"

variable adjustment. Increasing this vtr .able by twenty

percent increased the condemnation cost e:;timates, on

average, by only 6.79 percent. Adjusting the second

variable, "thrust per engine," in the sani-e way increased the

condemnation cost estimates, on average, by 25.29 percent.

A twenty percent increase in the third variable, "(maximum

takeoff weight divided by maximum empty weight)2," resulted

in the largest average estimate increase--135.07 percent.

These estimate increases were similar to the linear

model results. The first twc, variable- were impacted

slightly more in the arithmetic transformation model; but

,he third variable's average estimate increase was over ten

percent less (in the arithmetic model). Because the third

variable was '%e most sensitive of the lot, the arithmetic
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model was, overall, less sensitive than the linear model.

As seen in the linear model, those MDS with smaller initial

condemnations costs were, percentage wise, impacted more

severely during the sensitivity test.

Small Database Performance. Using the condensed

database had practically the same impact on this model as it

did the linear model. The R value rose slightly from

72.72% to 74.63% but other statistics were degraded. The F-

Value dropped from 58.645 to 12.749. The C.V. increased

from 40.54396 to 44.65703. For these reasons, no additional

analysis was performed with the small database.

Second Best Log-Log Transformation Model. As one could

see in the preceding analysis, the linear and arithmetic

transformation models were very similar in their

performance. It wasn't until log-log transformations were

used that significant improvements in the model statistics

were achieved. It should be noted that direct comparisons

between the two log-log models presented in this thesis and

the preceding models are hampered by the fact that different

databases were used in the development of the log-log

models. The "MDS annual sorties" and "MDS flyaway cost"

variables were incomplete for some MDS and therefore,

depending on which variables were included in a model, the

databases differed. The first log-log model's database

excludes the T-37B, T-38A,and KC-135A datapoints (as found

in the first two models) and adds FB-111A datapoints. The

second log-log model discussed also excludes the same three
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MDS; but in addition to the FB111A, its database includes F-

15A and F-15B datapoints. The second log-log model is also

the only one to contain five datapoints for all the MDS

contained in its database (the other models contained a few

MDS with less than five datapoints). Given that a generic

aircraft spares model was being developed (i.e., not mission

specific), it was considered more important to include as

many MDS as possible in each model rather than restricting

the models to a common database.

The mathematical equation for the second best log-log

transformation model is expressed in the following equation:

CONDEMN = anti 1 og(-11. 621185) * (SRT) .85797, (HRSORT). 976842*

(SPEED). 557096* (MAXLF) .525784* (TOEMPWT) 3.085 454 ,

(FLYCOST) .696182 (9)

where

CONDEMN = annual condemnations requirement ($)

SORT = annual sorties

HRSORT annual flying hours/MDS annual sorties

SPEED maximum speed (kn)

MAXLF = maximum load factor (g's)

TOEMPWT = maximum takeoff weight (lb)/maximum empty
weight (lb)

FLYCOST = flyaway cost ($)

Without going into the model's statistical performance,

one improvement in this model, relative to its predecessors,

is immediately apparent. Because this model has no large
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negative Y-intercept term, it will always provide one with

positive condemnation cost estimates.

Looking at Table 9, one can see that this model also

has many statistical impiovements over the lineav and

arithmetic transformatioi. models. For example, the R2 value

(92.81%) for this model .s the first to meet the acceptance

criterion? established iii Chapter III (80.0%). The adjusted

R2 value (92.08%) is very close to the R2 value, i.dicating

Table 9

Second Best, Log- Log Transformation Model
Analysis of Variance

Sun of Mean
Source DF Squares Square F Value Prob>F

Model 6 56.84300 9.47383 126.985 0.0001
Error 59 4.40173 0.07461
C Total 65 61.24473

Root MSE 0.27314 R-square 0.9281
Dep Mean 16.67773 Adj R-sq 0.9208
C.V. 1.63775

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob>,T,

INTERCEP 1 -11.621185 1.72285885 -6.745 0.0001
LSORT 1 0.85797"W 0.0438854 19.550 0.0001
LHRSORT 1 0.97684! 0.19575726 4.990 0.0001
LSPEED 1 0.557096 0.08992126 6.195 0.0001
LMAXLF 1 0.525784 0.14409791 3.64 0.0006
LTOEMPWT 1 3.085454 0.53437101 5.74 0.0001
LFLYCOST 1 0.696182 0.09304748 7.82 0.0001

indicating that the increase in R2 is not due sirtiply to an

influx of insignificant independent variables. in fact. all
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of the individual variables are significznt to the 99.9%

level and the F-Value (126.985) more than doubles the

previous models' statistics. Additionally, the overall

model's P-Value is very low (.0001).

The model's Root MSE value (27.314%' also represents a

significant improvement; but it stil. isn't as low as one-

would like to see. A figure closer o ten percent would

have provided a much warmer feeling bout $this model's

predictive accuracy.

The prediction interval varied ignificantly depending

upon whether one was near the center of the data or not.

Using the SAS 95% prediction interva bounds, it was noted

that at the center of data the width of the prediction

interval (converted to arithmetic sp- ce) was 11,324,214. At

the outer edge of the data, the pred ction interval width.

grew to 57,356,284--a difference of 6,032,070. Although

this model is more sensitive to a da-apoint's distance frrom

the center of the data, one must rem~tmber that the previous

models had poor intervals even in th! cent.'r of the data.

Being consistently bad is not an imp-ovement. only when one

Li

moves to the extreme high end of the data does the log-log I

model have larger prediction interva widths.

one must be careful when compar ng prediction interval

performance for a log-log model with that of a linear or

arithmetic transformation model. Be ng at the center of the

data in a log-log model does not guarantee that the

arithmetic width of the prediction interval is the smallest
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in the model (as it does in the linear and arithmetic

transformation models). This datapoint's prediction

interval, when converted to arithmetic space, is the

smallest, percentage wise, relative to the predicted value

of the dependent variable (Y). As will be seen in the

second log-log model, if the center of the data is located

nearer the larger predicted values for Y, the prediction

interval can be rather large and still be, percentage wise,

the best predictor of Y.

The only area in which this log-log model is weaker

than its predecessors is in its "ease of application." This

model has more cost drivers and therefore additional data

must be gathered before it can be used. However, the

variables were considered logical and they all tested to be

significant. If one were to exclude significant variables

simply for ease of application, one would have to accept a

lower R2.

The next test conducted was the confidence level

sensitivity test. The center of the data was located in

logarithmic space and then converted to arithmetic space.

Figure 5 shows how the bounds (converted to arithmetic

space) are impacted by varying the level of confidence. As

in the previous models, moving the level of confidence from

70% to 95% had a tremendous impact on the prediction

interval width. The width more than doubles from 5,698,179

to 11,324,210.
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Residual Plots. The same three forms of residual

plots used in the previous analysis were also used on the

log-log models. Once again, all of the standard residual

plots appeared to show randomly scattered datapoints. For

this model, however, neither of the two additional residual

plot forms identified the need for a variable

transformation. The patterns in the.,.e plots appeared to be

positively sloped and linear, indicai.ing that the correct

transformations had been found. It ,hould be noted that the
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data dispersion was greater for the "TOEMPWT" and "MAXLF"

variables.

Outliers. Using a log-log transformation did not

improve the outlier problem seen in the previous models.

Fifteen of the 66 datapoints used in this model were

identified as outliers with respect to Y by their

studentized residual values. The MDS represented in these

outliers included the F-4D, F-4E, A-7D, A-7K, B-52G, B-52H,

C-130B, C-141B, and FB-111A. The leverage values for only

one of the 66 datapoints indicated it was an outlier with

respect to X. This was a C-5A datapoint. The percentage of

outliers actually increased with this transformation.

The number of outliers which were influential was also

high according to the Dfbeta test. Fifteen different

datapoints were influential outliers for one variable or

another according to this test. The MDS included in this

category were the F-4D, F-4E, A-7D, A-7K, A-10A, C-130B, C-

130E, C-141B, and FB-111A. The Dfits test, however,

indicated that only four datapoints (including F-4E, C-130B,

and A-7K datapoints) were influential outliers with respect

to Y. The Cook's D test, however, revealed no influential

outliers. Once again, no action was taken to alleviate the

outlier condition.

Multicollinearity. Whether or not one believes

there is a serious multicollinearity problem in this model

depends upon which test's rule of thumb one has more faith

in. The rule of thumb used for the tolerance test is that
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each variables's tolerance value must be ten percent or

higher. The "HRSORT" variable has a tolerance value of

.07621283. The rule of thumb used in this thesis for the

COLLINOINT test is that the highest condition number can be

equal to or greater than ten. This model's largest

condition number is 8.19456. Even if a large degree of

multicollinearity exists, it doesn't necessarily mean that

the model will not continue to predict in a consistent

manner. If the multicollinearity is constant over time,

such as when it is due to some physical law, the model will

continue to predict as well as if the multicollinearity was

not present. According to the COLLINOINT test, the

multicollinearity relationship appears to be between the

"flying hours per sorty," "maximum load factor," "ratio of

maximum takeoff weight to maximum empty weight," and

"flyaway cost" variables. Given the time constraints of

this thesis, there was inadequate time to thoroughly study

the relationship among these variables to determine if a

constant relationship should be expected. Because the final

log-log model (discussed in the next model subsection) did

not appear to have a severe multicollinearity, no effort waE

made to adjust this model. Given the mixed results of the

tests, and the possibility that the multicollinearity is

constant over time, it hasn't really been determined that

there is a need for any adjustment.

Heteroscedasticity. The "datapoint residual

versus predicted condemnations plot" did not suggest the
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presence of heteroscedasticity in this model. The scatter

pattern maintained a fairly constant width across the data.

Model Predictive Caability. Table 10 shows how

well this log-log transformation 'nodel performed in

predicting costs for the validation data set (see Appendix

E). Each estimate produced by SAS was multiplied by a bias

adjustment factor of 1.038. The average absolute percent

error among the fourteen estimates was 30.6 percent. This

is a considerable improvement over the previous models'

percent error (63.6 perce't and 60.9 percent) and as was

already stated, this model provides no "negative" cost

TABLE 10

#2 Log-Log Transformation Model Validation Test Results

ACTUTAL #2 Estimate
CONDEI N Log-Log Divided by

MDS COSTE ESTIMATE ACTUAL

F16A 27,537,555 39,235,008 1.42
F4D 24,151,890 14,723,360 0.61
F4E 24,254,355 21,934,295 0.90
A7D 20,075,237 9,165,037 0.46
A7K 1,560,822 1,690,062 1.08
A1OA 12,012,017 25,926,341 2.16
FI11D 14,831,043 13,946,359 0.94
B52G 43,909,467 39,742,968 0.91
B52H 20,415.995 25,424,376 1.25
C5A 71,036,363 45,137,070 0.64
C130B 4,698 837 2,881,839 0.61
C130E 18,837 210 15,197,728 0.81
C141B 51,264.650 59,692,585 1.16
FB111A 13,471,819 12,312,288 0.91
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estimates. However, the largest absolute error was $25.9

million (for the C-5A), compared to $21 million and $19.4

loi .he pr1ev~ious models.

Model Sensitivity. Table 11 presents the results

of the model sensitivity test. For each cost driver, the

impact of a plus or minus twenty peLcent change in X (the

cost driver value) is presented. A. one can see, the model

Is relatively insensitive to change! in all the cost drivers

except one "the ratio of maximum taJ eoff weight to maximum

empty weight" (TOEMPWT). A twenty ;ercent increase in this

variable results in a 76 percent in.rease in the cost

estimate. The only other variable .ihich, when adjusted by

twenty percent, caused a percent a6justment in the

Table 11 24
#2 Log-Log Transformation Model

Sensitivity Test

Delta Y due to Delta Y due to
Variable increase in X decrease in X

SORT +.17 -.29
HRSORT +.19 -.20
SPEED +.1 - .12
MAXLF 4.10 -.11
TOEMPWT +.76 -.50
FLYCOST +.14 - .14

condemnations estimate greater than twenty percent was the

"annual sorties" variable. When the SORT value was

multiplied by .8, the cost estimate decreased by 29 percent.
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Small Database Performance. The condensed

database test resulted in mixed results. The model's R'

went up from 92.81 percent to 97.04 percent and the C.V.

fell from 27.314 percent to 25.285 percent. These welcomed

results were offset by the fact that the model's F-Value

fell from 126.985 to 38.314. Additionally, the condition

value on the COLLINOINT test went up to 9.8942. For these

reasons, no further analysis was performed on the condensed

data set model.

Best Loq-Log_ Transformation Model. The "best" log-log

transformation model was actually outperformed by the log-

log model discussed above in several respects, but it was

decided that its overall performance made this last model

the best one developed during the analysis.

The mathematical equation for the "best" log-log

transformation model is expressed in the following equation:

CONDEMN antilog(-9.185307)*(ACNUM)-018916*(THRUST)
11 345*

(TOEMPWT)2.491597*(FLYCOST)'667079 (10)

where

CONDEMN = annual condemnations requirement ($)

ACNUM = annual number of aircraft in MDS inventory

THRUST = maximum thrust per engine (lb)

TOEMPWT = maximum takeoff weight (lb)/maximum empty
weight (lb)

FLYCOST = flyaway cos ($)
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Like the first log-log model just des.cribed, this model

always provides positive estimates ( .e., the sign is

positive). Since the superiority of the last log-log model

over the linear and arithmetic transiormation models was

made clear in the last model subsect:on, the following text

will focus on the comparison of the two log-log models.

Table 12 provides the ANOVA statistics for the "best"

log-log transfocmation model. As prs.viously stated, there

are several statistics in which the 'irst log-log model

performs better 'Chan this model. Fo. example, the first

log-log model's Rt value (92.81%) is slightly better than

Table 12

Best Log-Log Transformation Model
Analysis of Variance

Sum of Mea.
Source DF Squares Squarie F Value Prob>F

Model 4 78.44007 19.610i(2 239.074 0.0001
Error 75 6.15187 0.082)2
C Total 79 84.59193

Root MSE 0.28640 R-square 0.9273
Dep Mean 16.64209 Adj R-sq 0.9234
C.V. 1.72094

Parameter Es:imates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob>!T:

INTERCEP 1 -9.185307 1.14373918 -8.031 0.0001
LACNUM 1 1.018916 0.05170451 19.707 0.0001
LTHRUST 1 0.743450 0.11291517 6.584 0.0001
LTOEMPWT 1 2.491597 0.44931709 5.545 0.0001
LFLYCOST 1 0.667079 0.08913384 7.484 0.0001
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that of this model (92.73%). Both model's adjusted R2s are

close to their R , and so the overall difference in the R2

statistic is minuscule. The first model's Root MSE

(27.314%) is also slightly better than that of this model

(28.640%). The individuals variables in both models are

highly significant (99.9%) and they both have very small P-

Values (.0001).

The first major difference in the models is in their F-

Values. The "best" model's F-Value (239.074) almost doubles

that of the first log-log model (126.985). This indicates

that it is a more statistically significant model. The best

log-log model also has two fewer -.st drivers. This will

make the data gathering process easier for this model.

The prediction interval analysis for the best log-log

model was interesting in that the bounds widths behaved

differently. Like the last model, the prediction interval

varied significantly depending upon whether one was near the

center of the data or not. Using the SAS 95% prediction

interval bounds, one can see that at the center of data the

width of the prediction interval (converted to arithmetic

space) is 50,932,443. Though this interval is significantly

wider than the first model's (11,324,212), this doesn't mean

that the model will always have larger bounds. At the outer

edge of the data (where X is the smallest), the prediction

interval actually shrinks to a width of 4,142,632--a

reduction of 46,789,811. The fact that this model's bounds
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are wider in the center of the data simply means that the

point at which this mcde. predicts the best, percentage

wise, occurs at higher estimated values of Y. The magnitude

of the prediction interval change is actually only 758

thousand higher in this model.

Figure 6 displays the confidence level sensitivity test

results. Like the other models, the results show that the
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Figure 6. Best Log-Log Transformation Model Confidence
Level Sensitivity

prediction interval almost doubles as the level of

confidence increases from 70 percent to 95 percent. In
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order to show the relative size of the various model's

bounds when the same scale is used for all the models, one

additional graph (Figure 7) was created. The bounds for the

linear and arithmetic transformation models were essentially

the same width and therefore, to make a cleaner graph,

Figure 7 includes only the linear bounds. The two log-log
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Figure 7. Model Prediction Interval Bounds Comparison

model bounds are also plotted. While the widths of the best

log-log model and the linear model appear L,, be

approximately the same, the intervals for the log-log model
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occur at a much higher predicted valie of Y. A plus or minus

$12.8 million bound for an estimate )f $41.6 million is much

more accurate (percentage wise) than a plus or minus $11.6

million bound for an estimate of $19.9 million.

Residual Plots. The same ;hree forms of residual

plots used in the previous analysis were also used on this

log-log models. The model performed essentially the same as

first log-log model. Once again, al of the standard

residual plots appeared to show randomly scattered

datapoints. Neitherthe of the two atiditional residual plot

forms identified the need for a vari.-ble transformation.

The data dispersion was a little tighter for this model

however.

Outliers. The best log-lo:; transformation.still

possessed an outlier problem. Seven';een of the eighty

datapoints used in this model were idtentified as outliers

with respect to Y by their studentized residual values. The

MDS represented in these outliers included the F-15A, F-15B,

V-4D, F-4E, A-7D, A-7K, B-52G, B-52H, C-5A, C-130B, C-130E,

and FB-I1IA. None of the datapoints were outliers with

respect to X according to the leverage values.

Once again, the number of outliers which were

influential was high according to the Dfbeta test. Fourteen

different datapoints were influentia out'iers for one

variable or another, including F-15A F-15B, F-4E, A-7K, C-

5A, C-130B, and FB-111A datapoints. The 3fits test

indicated that only four datapoints including one each of
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the F-4E, A-7K, C-5A, and C-130B datapoints) were

influential )utliers with respect to Y. Once again, no

action was taken to alleuiate the outlier condition.

Multicollinearty. Neither the tolerance values

or the COLLINOINT ccndition values indicated the presence of

significant multico~linearity in this model. The highest

condition number waE- only 4.3115, compared to 8.19456 for

the last model. Tho lowest tolerance value was .19756894.

This is a significant reduction in the level of

multicollinearity within the model.

Heteroscedasticity. The "datapoint residual

versus predicted condemnations plot" did not suggest the

presence of heteroscedasticity in this model. The scatter

pattern maintained a fai-ly constant width across the data.

Model Predicti e Capability. Table 13 shows how

well this log-log transformation model performed in

predicting costs for the validation data set (see Appendix

E). The SAS provided eELimates were multiplied by a bias

adjustment factor of 1.042 to arrive at the estimates in

Table 13. The average absolute percent error among the

fourteen estimates was 27 percent, compared to 30.6 petceit

for the first log-log model. The model provides no

"negative" cost estimates and the largest percentage error

was 77 percent (for the A-10A), compared to 116% for the

same datapoint in the first log-log model. The largest

absolute error was $13,477,655 (for the C-5A) compared to
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$25,89-.293 for the same datapoint ii the first log-log

model.

TABLE 13

Best Log-Log Transformation Model V..lidation Test Results

ACTUAL Be:t Estimate
CONDEMN Log-Log Divided by

MDS COSTS ESTIMATE ACTUAL

F16A 27,537,555 46,493,354 1.68
F4D 24,151,890 18,820,898 0.78
F4E 24,254,355 24,178,775 1.00
A7D 20,075,237 12,534,068 0.62
A7K 1,560,822 1,518,977 0.97
A1OA 12,012,017 21,269,329 1.77
FI11D 14,831,043 11,966,556 0.81
B52G 43,909,467 42,115,435 0.96
B52H 20,415,995 27,415,449 1.34
C5A 71,036,363 57,558,708 0.81
C130B 4,698,837 3,149,006 0.67
C130E 18,837,210 12,688,688 0.67
C141B 51,264,650 43,537,881 0.85
FB1I1A 13,471,819 11,701,858 0.87

Model Sensitivity. Table 14 presents the results

of the model sensitivity test. For !ach cost driver, the

Table 14

Best Log-Log Transformation Model
Sensitivity Test

Delta Y due to Delta Y due to
Variable increase in Y decrease in X

ACNUM +.20 -.20
THRUST +.15 -.15
TOEMPWT +.58 -.43
FLYCOST +.13 -. 14
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impact of a plus or minus twenty percent change in X (the

cost driver value) is presented.

Like the first log-log model, this model is relatively

insensitive to changes in all the cost drivers except one

"the ratio of maximum takeoff weight to maximum empty

weight" (TOEMPWT). A twenty percent increase in this

variable results in a 58 percent increase in the cost

estimate (compared to 76 percent for the first log-log

model).

Small Database Performance. The condensed

database test provided mixed results for this model. Using

this database, the model's R2 went up from 92.73 percent to

95.36 percent. Its Root MSE dropped from 28.64 percent to

26.38 percent. Reducing the database size resulted in a

large drop in the model's F-Value. It fell from 239.074 to

56.555. The small improvements were not considered

significant enough to pursue further analysis using the

small database.

Demand Volatility _Analysis

This section is dividec. into two subsections, the first

section presenting the results of a replenishment spares CER

and the second section looking at spreadsheet generated

demand volatility factors.

Replenishment Spares CER. The ultimate goal of

producing the condemnation CERs described in the preceding

text was to take the estimates generated by these models and
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use them to predict annual replenishment spares costs. As

discussed in Chapter II, this type o- approach is currently

i-ncluded in the HQ AFLC/FMC's Logistics Support Cost Model

(LSC) [the LSC model, however, is an accounting type model

as opposed to a CER]. An attempt was made to improve upon

the accuracy of the demand volatility factor used in the LSC

model to convert condemnation costs to replenishment spares

costs. The following text presents the results of this

effort.

A SIV replenishment spares model was created with SAS

using annual MD condemnation costs as the sole cost driver.

Appendix G provides the condemnations cost database and

replenishment spares requirements database used in

development of the SIV. The tables in this appendix also

include the mission design (MD) and fiscal year associated

with each datapoint. The arithmetic expression of this

model is expressed in the following equation:

REPLEN -10,613,130 + 3.75853(CoNDEMN) (ii)

where

REPLEN = annual replenishment spares requirement ($)

CONDEMN = annual condemnations cost ($)

This model has the same problem found in the linear and

arithmetic transformation condemnation CERs--it has a large

negative intercept and therefore can result in negative cost

estimates. This model also has poor statistics, as one can

see in the ANOVA table provided below.
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The "condemnations cost" variable has the correct

parameter estimate sign and is a significant cost driver

(P-Value of .0001). The model's F-Value (129.849) is also

greater than that seen in the first two models; but

everything else goes down hill from there. The R2 value

(59.06) suggests that there are other sources of error not

captured in this model. This statistic is well below the 80

percent acceptance criterion stated at the end of Chapter

III. The C.V. (58.46779) tells one that this model is not a

very reliable predicter of annual replenishment spares

requirements. This is confirmed in Figure 8, which presents

the SAS 95% prediction intervals for this model. The

interval width is extremely large and still some datapoints

fall outside the bc.unds.

Table 15

Replenishment Spares CER Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 1 1.6559149E18 1.6559149E18 129.849 0.0001
Error 90 1.1477359E18 1.2752621E16
C Total 91 2.803650PE18

Root MSE 112927504.960 R-square 0.5906
Dep Mean 193244805.913 Adj R-sq 0.5861
C.V. 58.46779

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob>jTj

INTERCEP 1 -10613130 21409126.648 -0.496 0.6213
CONDEMN 1 3.758530 0.32983652 11.395 0.0001
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The model's database also has an abundance of outliers,

as seen in the preceding models. Twelve out of 92

datapoints are identified as being outliers with respect to

Y and sixpoints are outliers with respect to X. Of these

numbers, eight datapoints were tested (Dffits test) as being

influential outliers with respect to Y. Six of these eight

datapoints and one additional one were also identified as

being influential outliecs by the Dfbetas test. The Cook's

D test did not identify any influential outliers. Once

again, no action was taken to adjust the database.

Although the statistics of this model are not very

impressive, they do provide one with a sense of how accurate

one can expect to be in using the model. The analysis

supporting the demand vulatility factor used in the LSC

model did not provide s'tch statistics.

An additional SAS 1 odel was created with the Y-

intercept restricted to a value of zero. This action

flattened the slope fouid in the previous model so that one

doesn't obtain "negativ!" estimates. The slope for this

model (3.621965) is the value one would use as the demand

volatility factor. The ANOVA statistical measurements are

no longer meaningful fo: this model because of the

restriction placed upon the model. The demand volatility

factor from this model, 3.621965, is significantly larger

than the 2.15 value used in the LSC model.

Demand Volatllit Analysis. In addition to the SAS

generated SIV mode[I described above, demand volatility
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factors were developed by comparing 11D arnual condemnation

costs with the annual replenishment ;pares requirements

developed for these MDs two years eaclier. Table 16

provides the results of this analysis. The missing demand

volatility factors in the T-37 and T-38 data sets are due to

holes in the replenishment spares requirements data set.

The one missing demand volatility factor in the FB-11l data

set is due to the fact that this MD is being converted to

another F-Ill MDS (Rosenthal, 1991). The factor was

abnormally high and it was felt that this was due to the

start of the conversion process.

In addition to the individual demand volatility

factors, averages are provided both by FY and within the

MDs. In fact, two different averages are provided. The

first is the average of all the individual demand volatility

factors by category (FY and MD). The second average is

based upon the raw data behind the demand volatility factors

(i.e., rather than just averaging the factors, the total

replenishment spares requirements are divided by the total

condemnation costs). The first average give equal weight to

each of the individual factors, regardless of the MD's

relative contribution to total cost:. The raw data average

gives more weight to high cost itemi.

Additionally, Table 16 includes the results of a simple

t-end analysis. If the last three datapoints within a

particular MD data set were either lower or higher than the
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data set average, a downward (DWN) or upward (UP) trend was

identified.

Although numerous individual demand volatility factors

were less than the factor (2.15) used in the LSC model, only

the T-37 (with only three factors ii. the data set) had an MD

average which was less. In fact, mz.ny of the factor

averages were substancially higher than 2.15. Looking at

the FY averages shows that none werE less than the current

LSC factor. The average demand volatility factor for all

MDs across all the FYs was 3.46. The raw data average was

just a little higher--3.56. Again, this value is

substancially higher than the current LSC factor.

When one looks at the trends in the MD factor data

sets, however, one sees that half of the MDs have downward

trends and none exhibit upward trends. The FY averages

confirm this. The annual average demand volatility factors

steadily decrease each year. The annual raw data averages

do not exhibit a steady decrease, but the trend is

definitely downward. The 2.15 factor used in the LSC model

comes much closer to the averages experienced over the last

few FYs.

The overall downward trend in the factor averages is

consistent with the tightening of DoD budget purse strings

seen in recent years. The first few years of the analysis

database included the "Reagan build-up years." A part of

Ronald Reagan's campaign strategy had beFn to suggest that,

under President Carter, the DoD had become a hollow force,
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ill-equiped to adequately protect the nation. Funding was

not an issue in these years and therefore the replenishment

spares requirements were much higher. The abundance of

funding, however, was not sustained across the entire

analysis database. The lower factor averages in the latter

years of the analysis may be due, at least in part, to this

fact.

Besides looking fox treads in the factor averages, the

individual factors were also evaluated to see if they

appeared to fall into gioupings by aircraft mission (e.g.,

fighter, bomber, etc.). There was too much variability

within the different mission categories and insuflicient

sample size to draw conclusive results. It was interesting

to note, however, that Lome of the high cost MDs' averages

were consistently highei than the current LSC factor. The

F-16 and F-15 factors, in particular, have consistently been

closer to four than to 2.15.

While no mission-unique demand volatility factors are

suggested from this analysis, it is clear that a single

factor, used over a numher of years for all aircraft, will

introduce a significant amount of error to one's estimate.
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V. Summar_ and Recommendation_

Introduction

This Chapter summarizes the results of the annual

condemnations cost model development and demand volatility

analysis. Recommendations for use of the models developed

and for further study are also provided.

Summary

The major objective of this thesis was to develop a

parametric model for estimating anntal replenishment spares

costs based upon aircraft physical and performance

characteristics. The methodology for achieving this

objective was divided into two parts. First, a CER for

estimating annual condemnation costs was developed and then

the relationship between condemnation costs and

replenishment spares requirements was evaluated. The

analysis of this relationship was further divided into two

steps: 1) a SIV model for estimating replenishment spares

costs was developed using annual condemnations as the sole

cost driver; and 2) annual replenishment spares requirements

(by MD) were compared to annual condemnation costs to arrive

at factors known as "demand volatility" or "churn" factors.

Four condemnations CERs were evaluated in the text.

The best linear and arithmetic transformation models failed

to produce statistically acceptable results. The two best

log-log transformation models provided significantly
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improved results; but s ill their predictive accuracy is

questionable. While th, study showed that performance and

physical characteristic: could be used to produce

statistically significai t models, there was too much

variability in the data (as evidenced by the number of

outliers) to achieve de.irable model prediction intervals.

The demand volatil ty factor analysis suggests that one

factor (for all aircrafi and all fiscal years) does not

adequately represent th, changing conditions which impact

the relationship of rep:enishment spares requirements to

condemnation costs. A (ownward trend in the factor averages

was observed across the lata--indicating the need for

continuing trend analys.-s to update any factor used. No

mission-unique factors tere suggested due to variability in

the factors and inadequ te mission-unique sample sizes.

Recommendations fo Use. The first two models analyzed

for this thesis (linear and arithmetic transformation

models) are not recomme. ded for use due to their poor

statistical performance The two log-log transformation

models are viable cost iodels for predicting annual

condemnation costs. Be ause neither model was blessed with

small prediction interv is, however, it is recommended that

they are used for compa ison purposes with other estimating

approaches and not as tie primary estimating tool.
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The replenishment spares CER ha4 even poorer statistics

than the linear and arithmetic transformation condemnation

CERs and therefore isn't recommended for use.

The overall demand volatility ajerage was significantly

higher than that currently used by HQ AFLC/FMC in their

Logistics Support Cost Model. However, there is a downward

trend in the data and if one were to average the factors

over the last three years in the data set, the factors would

not be nearly as far apart. Given the number of adjustments

made to the replenishment spares database so that it could

be compared with the condemnation ccsts catabase (see

Chapter III), it would probably only be %anity that suggests

this thesis's factor average is superior to the one

currently in use. This point is really mute, however,

because the analysis suggests that cne factor should not be

used for all aircraft and across numerous fiscal years. The

MD factor averages are recommended as starting points for

developing analogous weapon system demand volatility

factors. Because trends were identified in the data, future

users should first update the database with the latest data

available before using the MD factor averages.

Recommendations for Future Study. There are several

areas related to this research which would benefit from

additional study. The whole topic of demand volatility is a

relatively unexplored domain with very little research

conducted and even less written down. Though one would

think that condemnations should be the major driver of
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replenishment spares requirements, what little research that

has been conducted to date indicates otherwise.

If the number of replenishment spares required each

year truly exceeds the condemnations by the ratios of two to

one and greater, one must wonder what happens to all the

spares. With aircraft modifications occurring continuously,

perhaps a large number o' spares become obsolete. Whether

data exists for this kinil of study is unknown; but the

research would be enlightening.

This demand volatil:.ty factor analysis examined whether

or not the factors tended to group by mission category.

Additional study should be conducted to determine if the

work unit code unique factors could be developed. For

example, avionics spares may have a different factor average

than the airframe snares.

If a suitable database is discovered or developed, the

same research conducted in this thesis for replenishment

spares can be conduzted For initial spares.
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Appendix A: Definition of Terms

Unless specified otherwise, the following definitions

are taken from the AFLC Cost Analysis Handbook (TASC,1989):

Additives - Initial spare "additives" are special stock
level requirements over and abcve those determined by
the standard AFLC Form 614 process. Replenishment
spares additives are, as the name implies, requirements
which are calculated separately from the D041
calculations and added manually into the D041 system
(Rosenthal, 1991).

Analogy Based Estimating - method of cost estimating
based upon adjusting the actual cost of a similar
existing system for "complexity, technical, or physical
differences," between it and the new system for which
the estimate is being derived (Ch 14, 27).

Availability - A measure of the degree to which an item
is in an operable and committable state at the start
of a mission when the mission is called for at an
unknown (random) time. (Ch 5, 31)

Base Repair Cycle Time (BRCT) Pipeline - The average
number of spares resident in the base level repair
process at any given point in time (Dement, 1990:Appen
1, sec 2.1.2).

Condemnations - When the cost to repair a spare exceeds
75% of the cost to purchase a new spare, the item is
"condemned" (Novak, 1991). Condemnation spares,
therefore, are those spares purchased to replace the
condemned spares.

Cost Estimating Relationship (CER) - a mathematical
relationship that relates one variable, usually cost
(called the dependent variable), to one or more other
cost drivers (called the independent variables). (Ch
10, 3)

Cost Drivers - "Those (independent] variables that
exhibit some systematic relationship with cost" (Ch 10,
3).

Demand Based Sparing - A category of inventory
control/cost estimating models which base their
stockage recommendations upon the probability of
meeting the demand for a spare part out of available
stock (AFLCP 57-13, 1987:10).
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Demand Volatility - Condemnation spares are only a
subset of the total replenishment spares requirement.
The difference between these two requirements is
attributed to "demaad volatility" (as known as
"churn"). The causes of demand volatility include: 1)
replenishment spares funds are used to purchase
pipeline spares when initial spares funds arp
inadequate, 2) changes iJ, flying hour program, parts
utilization rates and maijitenance factors, and 3)
additive requirements (Noxak, 1991).

Depot Repair Cycle Time (rRCT) Pipeline - The average
number of spares in the depot level repair process
which were originally generated at the base level
(Dement, 1990:Appen 1, sec 2.2.1).

Engineering Cost Estimate - An approach to cost estima-
ting that "encompasses a detailed 'build-up' of labor
hours, material costs, and overhaul at very finite sub-
indentures of the program/activity/item for which cost
is to be estimated" (Ch 14, 28).

Flyaway Costs - Non-recurring plus recurring costs for
airframe, propulsion and avionics, program management,
test and evaluation, [and] allowances for engineering
changes. (Levine and Horowitz, 1989:5)

Initial Spares - Repairable components which support
newly fielded end items (or principal items) for the
entire production run of the aircraft (Rexroad, Tillia,
and Tritle, 1990:21).

Independent Cost Estimate (ICE) - A cost estimate per-
formed by an "honest broker" with no ties to the
program office. It is used as a check for the
reasonableness of the program cost estimate (Ch 14, 8).

Initial Spare Support List (ISSL) - ISSLs include those
provisioned items which the equipment specialist and
the using conmand agree should be stocked and on-hand
for support of operations and maintenance at the
operational location when the first items become
operational. (Reynolds, 1989:15)

Job Routed (JR)/Non-JR Repair Cycle Time Pipeline and
Depot Overhaul Stock - spares required to cover
"programmed depot maintenance and component overhaul"
(Dement, 1990:Appen 1, sec 2.2.2).

Life Cycle Cost (LCC) - The total cost to the
Government of acquisition and ownership of the system
over its full life. It includes the cost of
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development, acquisition, operation, support, and where
applicable, disposal. (Ch 5, 33)

Line Replaceable Unit (LRU) - Ar aircraft is composed
of major subassemblies such as the avionics system.
These systems are, in turn, comrosed of final
assemblies or components known as LRUs (AFLCP 57-13,
1987:3).

Maintainability - A system or ccmponent characteristic
which "refers to the ease with ehich a given
component/system can be maintaired" (Ch 5, 18).

Mean Time Between Demand (MTBD) - A derivative of the
mean time between failure (MTBF) which has been
modified to account for demand crivers not included in
the MTBF. For example, the MTBF does not include
component failures which are b~yond the contractor's
responsibility such as operator error and mishandling
(Reynolds, 1989:81-82).

Mean Time Between Failure (MTBF) - For a particular
interval, the total functional life of a population of
an item divided by the total number of failures within
the population. (Ch 5, 33)

Most Probable Cost (MPC) - An estimate used during
source selection to check the reasonableness of a
bidder's cost proposals (Ch 14, 9).

Obligation - As used in the Air Force program control
community, funds are said to be "obligated" at that
point in time when the contractual agreement between
the Air Force and contractor is posted into the
official accounting and finance records. "Obligations"
are separate from "commitments" and "expenditures."
The former takes place when a purchase request or other
authorized commitment document is signed by the
accounting & finance certifying official and the latter
takes place when the Air Force pays the Contractor.

Operations and Support (O&S) Costs - Fixed and variable
costs of personnel, material, facilities, and other
items needed largely for the peacetime operation,
maintenance, and support of a system during activation,
steady state operation, and disposal. (Ch 17, 3)

Order and Shipping Time (OST) Pipeline - The number of
spares required to cover the time to order and ship
spares to the base from the depot whenever components
are sent to the depot for repair or are condemned [see
"condemnations" above] at the base. It is based on the
average shipping and handling times and average supply
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demand rates at the base level. (Dement, 1990:Append
1, sec 2.1.1)

Procurement Lead-time - The sum of the administrative
and production lead times. Administrative lead time
(ALT) is "the period of time, in whole months, from the
start of IR (item manager] preparation of purchase
request/military interdepartmental purchase request
(PR/MIPR) to date of contract award" (AFLCR 57-4,
1983:Ch 1, 5). Production lead time (PLT) is "the time
between award of the contract or purchase order and
resultant first significant delivery quantity" (AFLCR
57-4, 1983:Ch 1, 6).

Procurement Lead-time Spares - spares which are
purchased to ensure adequate stock during the
administrative and production lead-times for items"
(Dement, 1990:Append 1, sec 2.3.2).

Program Cost Estimate (PCE) - The "program manager's
official estimate of the financial resources required
to competently conduct the program contained in its
Program Management Directive (PMD)" (Ch 14, 8).

Provisioning - The process of determining and acquiring
the range and quantity (depth) of spares and repair
parts, and support and test equipment required to
operate and maintain an end item of material for an
initial period of sei'vice. (Ch 5, 34)

Provisioning Technical Documentation - A "generic
term for all -he provisioning data developed by the
contractor, including listings, drawings, diagrams,
schematics, etc." (Reynolds, 1989:10).

Recoverable Spares - "Repairable parts, assemblies,
components, etc. used in the repair of higher level
assemblies" (Reynolds, 1989:49).

Readiness Based Sparing - A category of inventory con-
trol/cost estimating models which base their stockage
recommendations upon maintaining sufficient spares to
ensure aircraft availability goals are met. The key
difference between this approach and demand based
sparing is that the demand for a spare does not neces-
sarily imply that an aircraft cannot perform its
mission (Horner, 1991).

Reliability - The probability that the system wxll
satisfy the need for which it was intended in an
acceptable manner, for a given period of time, when
deployed and used under a given set of operating
conditions. . . . Satisfactory performance describes
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the level at which the item/system must perform;
performance below this level is then considered
"failure" even though the specific part/component has
not broken or reached a zero performance level. (Ch
5, 16)

Repair Parts - "Consumable non-repairable parts used to
repair higher level assemblies" (Reynolds, 1989:49).

Replenishment Spares - Repairable components,
assemblies, or subassemblies required to resupply
initial stockage or increased stockage for reasons
other than support of newly fielded end items.
Replenishment would include additional stockage due to
increases such as usage, readiness initiatives, and
redeployment of end items. (Ch 17, 40)

Safety Level - The quantity of spares held at both the
base and depot repair facilities to account for
fluctuations in the pipeline requirements (Dement,
1990:Appen 1, sec 2.1.3 & 2.2.3).

Shop Replaceable Unit (SRU) - The subcomponents which
together compose a line replaceable unit (LRU) are
known as SRUs (AFLCP 57-13, 1987:3).

Should Cost Estimate (SCE) - A cost estimate developed
for individual contracts as a basis for theGovernment's negotiation objective (Ch 14, 9).

Single Best Estimate (SBE) - A cost estimate which
results when the independent cost estimate and program
cost estimate processes are combined as one. Both
program office and staff cost analysts combine to form
a joint estimating team in developing the SBE (Ch 14,
9).

Source, Maintenance, and Recoverability (SMR) Code - A
code assigned to every item (both recoverable spares
and repair parts) identified in the provisioning
technical documentation. The code "indicates the
method of support (i.e., base, intermediate, or depot
repair), authorized maintenance actions [e.g., repair,
reconditioning, etc.], and appropriate disposal
authority for each item" (Reynolds, 189:12-13).

140



Appendix B: Recoverable Spares Cost Estimating Background

Introduction

The purpose of this appendix is to provide additional

background information for those readers new to the field of

z.ircraft recoverable spares cost estimating. The text

begins with definitions for key terms. Following this are

descriptions of the current methodologies for developing

both spares budgets and buy requirements. These

descriptions are divided into separate subsections devoted

to the two major classes of recoverable spares--initial and

replenishment--beginning with the former class. After this,

a discussion of how spares cost estimating relates to the

life cycle phase of the aircraft is provided. Related

subtopics in this section are: 1) the maintenance plan

development, 2) the various methodologies for cost

estimating, and 3) the different reasons for cost estimates.

Finally, the appendix concludes with an analysis of the

different sources of data relating to recoverable spares

evaluated for this thesis.

Key Terms

Before proceeding any further in the text it is

important that several key terms be defined. First, the two

major classes of recoverable spares (those which can be

repaired when broken) are defined as follows:
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Initial Spares - Repairable components which support
newly fielded end items (or principal items) for the
entire production run of the aircraft. The budget will
support stockage at all levels including the pipeline
Initial spares will also include whole spare engines.
(Rexroad, Tillia, and Tritle, 1990:21)

Replenishment Spares - Repairable components,
assemblies, or subassemblies required to resupply
initial stockage or increased stockage for reasons
other than support of newly fielded end items.
Replenishment would include additional stockage due to
increases such as usage, readiness initiatives, and a

redeployment of end items. (TASC, 1989:Ch 17, 40)

These definitions requires some clarification and

further definition. Before 1985, initial spares would only

cover newly fielded aircraft for an average of two years.

After this point, all spares were considered replenishment

spares, even if the actual production line for the new

aircraft continued on for many years. Under the new

definition of initial spares, each production lot is covered

fbr a period of approximately two years before transitioning

to replenishment spares. If the production line provides

(for example) ten lots of aircraft over a ten year period,

each lot is covered by initial spares for its own two year I
period (Rexroad, Tillia, and Tritle, 1990:21). There were

aircraft whose production line began before the new "

definition and continued on afterwards. For these aircraft,

if the two year initial spares coverage period had already

ended and replenishment spares were being used when the

definition changed, they continued to use replenishment

spares funds to cover all future spares requirements. In

other words, these aircraft were "grandfathered" under the
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old definition. Those aircraft still in the midst of their

two year initial spares coverage adopted the new definition

and thus future production lots received their own initial

spares coverage period (Rosenthal, 1991; Neuhart, 1991).

The initial spares definition mentions that this class

covers the "pipeline". Because recoverable spares can, by

definition, be repaired there are always a number of spares

in the process of being repaired or in transit to or from

the repair facilities. The "pipeline" is divided into

several pieces. The Oi ler and Shipping Time (OST) Pipeline

is

the time to order .nd ship spares to the base from the
depot whenever comonents are sent to the depot for
repair or are condemned [see "condemnation spares"
below] at the base. It is based on the average
shipping and handling times and average supply demand
rates at the base level. (Dement, 1990:Append 1, sec
2.1.1)

The Base Repair Cycle T.me (BRCT) Pipeline is "the average

number of spares residenit in the base level repair process

at any given point in tLme" (Dement, 1990:Appen 1, sec

2.1.2). The Depot Repa.r Cycle Time (DRCT) Pipeline is "the

average number of spares in the depot level repair process

which were originally generated at the base level" (Dement,

1990:Appen 1, sec 2.2.1). The Job Routed (JR)/Non-JR Repair

Cycle Time Pipeline and Depot Overhaul Stock provide spares

to cover "programmed depot maintenance and component

overhaul" (Dement, 1990:Appen 1, sec 2.2.2). An analogy for

this last subset of initial spares is when an auto mechanic

is performing a scheduled maintenance check on one's car and

143



he recommends that a few parts be replaced. These parts

have not yet failed; but it isn't worth trying to prolong

their life when their failure may result in greater,

costlier damage to the vehicle.

Also included in initial spares requirements are safety

level stock, procurement lead-time, additives, and

condemnation spares. The base and depot safety levels

provide additional spares to account for fluctuations in the

pipeline requirements (Dement, 1990:Appen 1, sec 2.1.3 &

2.2.3). AFLCR 57-27, Initial Requirements Determination,

does not provide for initial spares "safety stock" by name

as seen in the replenishment spares regulations. It does,

however, alltvw budgeting for the purchase of initial spares

to cover the lead-time (the period of time from obligation

of funds to spares delivery) plus an additional three month

supply (AFLC 57-27, 1986:60; Rosenthal, 1991). This

standard three month period is not as sophisticated as the

marginal analysis techniques used to develop replenishment

spares safety level (Rosenthal, 1991) but it serves the same

purpose. "Procurement lead-time spares ar.i purchased to

ensure adequate stock during the administrative and

production lead-times for items" (Dement, 1990:Append 1, sec

2.3.2). Initial spare "additives" are special stock level I
requirements over and above those determined by the standard

AFLC Form 614 process. When the cost to repair a spare

exceeds 75% of the cost to purchase a new spare, the item is
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"condemned" (Novak, 1991). Condemnation spares, therefore,

are those spares purchased to replace the condemned spares.

The definition for replenishment spares implies that

this class of spares coverage basically picks up when

initial spares coverage ends. In reality, the break between

the categories is not as clean as the definitions imply.

The term "replenishment" suggests maintaining a previously

established level of spares. Condemnation spares do fulfill

this function as one of the major elements of replenishment

spares; but they are only a part of the total replenishment

spares requirement. There have been (and continue to be)

situations where the initial spares estimates were

inadequate and pipeline requirements were filled with

replenishment spares funding (Rosenthal, 1991). The final

major element of replenishment spares are additives. The

"Recoverable Consumptior. Item Requirements System" (D041)

computes replenishment c.pares requirements based upon

historical demand. Replenishment spares additives are, as

the name implies, requiiements which are calculated

separately from the D04:. calculations and added manually

:.nto the D041 system (Rosenthal, 1991). AFLCR 57-4, the

governing regulation for D041, provides a list of the

numerous additive requirements. Replenishment spares also

cover smaller categories of requirements such as safety

level and procurement lead-time spares.

Finally, several additional spares requirements such ds

negotiated base stock level. , forward supply support levels,
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war readiness material kits, depot floating stock,

insurance, and foreign military sal ts are included in the

total recoverable spares requiremen.. These categories of

spares represent special requiremen.s that are tracked

separately. As such, they are not ncluded in the scope of

this discussion. One may look to A'LCR 57-4, Recoverable

Consumption Item Requirements Systei (D041) for additional

details on these requirements.

Additional terms requiring def.nition at this time

include:

Availability - A measure of th- degree to which an item
is in an operable and committa)le state at the start of
a mission when the mission is 3alled for at an unknown
(random) time. (TASC, 1989:Ch 5, 31)

Flyaway Costs - Non-recurring plus recurring costs for
airframe, propulsion and avionics, program management,
test and evaluation, (and] allowances for engineering
changes. (Levine and Horowitz, 1989:5)

Provisioning - The process of determining and acquiring
the range and quantity (depth) of spares and repair
parts, and support and test eqiipment required to
operate and maintain an end itm of material for an
initial period of service. (T;,SC, 1989:Ch 5, 34)

Initial Spares Buget Development

Historically, the agency resportsible for initial spares

budget preparation, HQ AFLC/FMBSR, has used a factor based

approach to developing their initial spares requirements

(with the exception of whole engine spares). This has

primarily involved multiplying airciaft flyaway cost by a

spares "factor" (additional factors are applied against

training and peculiar support equiprient]. These factors are
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sometimes adjusted based on the expert opinion of the budget

manager given any input from other sources such as the Air

Logistics Centers (ALCs) or System Program Offices (SPOs)

(Neuhart, 1991; Rexroad, Tillia, and Tritle, 1990:1). The

underlying logic of this methodology is limited to the

assumption that the greater a weapon system's flyaway cost,

the more expensive its spares will be. It continues to be

used because: 1) data inputs required for other models are

either not available or very hard to come by, and 2) it is

easy to apply.

There are two changes to this historical perspective.

First, HQ AFLC/FMBSR has given most of its responsibility

for budget preparation to the ALCs [they still budget for

common support equipment and whole spares engines are

handled separately]. The FY 92/93 Budget Estimate

Submission (BES), dated September 1990, was the first ALC

input (Neuhart, 1991). Second, the factor based approach to

developing initial spares budgetary requirements has been

criticized for its lack of insight into the underlying

causal relationships driving the estimates (Dement, 1990:Sec
A

1; Rexroad, Tillia, and Tritle, 1990:1) and efforts are

underway to develop a new methodology.

For a while, deman(' based approaches similar to those

used in the initial spares provisioning process were

considered the likeliest candidates to replace the factor

based approach. This mentality is seen in a coordinated

message from SAF/FMC, SAF/AQK, SAF/AQX, and HQ USAF/LEX,
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dated 2 October 1990, which stated that the Air Force Cost

Analysis Improvement Group (AFCAIG) preferred the use of

"valid, demand based models for calculating initial and

condemnation spares for POE's [Program Office Estimates] and

ICA's [Independent Cost Estimates) presented to them for

Defense Acquisition Board (DAB) milestones" (SAF/FMC, 1990,

2). Demand based approaches such as the Logistics Support

Cost (LSC), and ModMETRIC (see Appendix C) are concerned

with the probability of meeting the demand for a spare part

out of available stock (Alexander, 1990:111-24; AFLCP 57-13,

1987:10). Studies were conducted to evaluate demand based

approaches that would fulfill the initial spares budget

development role (Dement, 1990; Rexroad, Tillia, and Tritle,

1990); but before an "approved" methodology was arrived at,

the emphasis switched from "demand based" to "availability"

or "readiness based" approaches.

The use of readiness based sparing (RBS) methodologies

is expected to reduce recoverable spares costs (Beckett, 1).

While demand based models try to ensure that spares are

available upon demand, the RBS models recognize that demand

for a spare doesn't necessarily imply that an aircraft must

be grounded or can't perform its mission. The RBS

methodology, rather than focusing on the demand for

individual spare parts, is concerned with maintaining

sufficient spares stock to ensure aircraft availability

goals are met (Homer, 1991). This theoretically smaller

stock results in reduced reccverable spares costs.
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According to a HQ USAF/LEYS letter dated 14 November

1990, the Office of the Assistant Secretary of Defense,

Production and Logistics (OASD/P&L) was preparing a ne:w

regulation to replace DoDI 4140.42, Determination of

Requirements for Secondary Item Spare and Repair Parts

Through the Demand Period, which will mandate the use of RBS

methods (Beckett, 1). HQ AFLC/XRI is currently evaluating

the RBS methodology used by the Army and Navy for potential

Air Force implementation (Robinson, 1991).

Until a practical alternative methodology is developed

to replace the factor based approach, it will probably

continue to be relied upon for developing initial spares

budgets (as evidenced by the number of ALCs using it for

their FY 92/93 BES inputs (Neuhart, 1991)).

Initial Spares Provisioning Requirements Development

Due to the length of the Program Objective Memorandum

(POM) process (the long range budget plan), initial spares

budget wedges are typically put in place several years

before initial spares provisioning actually occurs (Neuhart,

1991). Details of an aircraft's maintenance plan required

for initial spares provisioning are not always available

when these budgets are being developed (TASC, 1989:Ch 5,

55); therefore, the factor based approach to budgeting

discussed above bears little resemblance to the method used

for initial spares provisioning. While budgets are

submitted for "aircraft" requirements, provisioning takes
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place at the individual "parts" leve'. This section will

provide an overview of the method used to letermine the

"range and depth" of initial spares iequirements known as

the initial spares provisioning (ReyiLolds, 1989:5). It

should be remembered that "provisioning", as defined

previously, encompasses more than initial spares; but the

scope of this discussion excludes information not pertinent

to spares. Unless indicated otherwise, references in this

section will come from a 1989 analysis of the Initial Spares

Support List (ISSL) process sponsored by the Air Force

Logistics Management Center. The analysis team was led by

Captain Steve Reynolds. This reference is recommended for

readers who are interested in an in depth analysis of the

entire provisioning process.

Provisioning Methods. Activities which take place

during provisioning include

the assigning of Source, Maintenance, and
Recoverability codes; assignment and review of the
various provisioning factors which quantify projected
usage requirements; assignment of Item Management
codes; assignment of Federal Supply Classes; etc." (7).

Before explaining these activities in more detail, the three

methods used for provisioning will be described in the

following order: 1) the Provisioning Conference; 2) the

Resident Provisioning Team; and 3) the Depot Committee.

The Provisioning Conference is the most commonly used

provisioning method. Participants may include the prime

contractor, the Systems Program Manager (SPM)/End Article
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Item Manager (EAIM), representatives from the using command

and the Defense Logistics Agency (DLA), and the Air

Logistics Center equipment specialists. This team meets on

a temporu.x Lci at a time and place which is mutually

agreed upon to accomplish the provisioning function (7).

Major weapon systems may make use of the Resident

Provisioning Team approach. In this method, the

provisioning team is a small group of specially qualified

personnel who are assigned on a permanent basis to the

contractor's facility. The objective of this approach is

to reduce the time required to furnish the contractor
with spare and repair parts orders, to achieve a
greater degree of understanding and cooperation between
the contractor and the Air Force, and to ensure a
greater degree of compliance with provisioning
requirements by the contractor. (9)

The final provisioning approach is reserved for those

cases where the "system or end item is not overly complex or

the number of items involved is not too great" (10). This

smaller scale version of the Provisioning Conference takes

place at a Depot and is called the Depot Committee.

Provisioning Technical Documentation (PTD). PTD is a

"generic term for all the provisioning data developed by the

contractor, including listings, drawings, diagrams,

schematics, etc." (10). The PTD is the basis for the

provisioning team's decisions regarding the range and depth

of required spares. The System Program Office (SPO) is the

agency responsible for including PTD requirements in their
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systems acquisition contract. PTD is entered into and

maintained on the AFLC Provisioning System (D220) (10).

Provisioning Activities. As previously stated,

provisioning activities include assigning codes and factors

which "identify (1) which items will be required for systems

support, (2) how many items will be required, and (3) how

those items will be managed in the inventory" (12).

A Source, Maintenance, and Recoverability (SMR) code is

assigned to every item (both recoverable spares and

consumable repair parts) identified in the PTD. This code

"indicates the method of support [i.B., base, intermediate,

or depot repair], authorized maintenance actions re.g.,

repair, reconditioning, etc.], and appropriate disposal

authority for each item" (12-13). It is this code, assigned

by the ALC equipment specialist (12), which fulfills the

function of identifying the range of recoverable spares

required.

Other codes include the Item Management Code (IMC)

which assigns management responsibility for each item and

the Material Management Aggregation Code (MI4AC) which groups

related hardware for management purposes that might

otherwise be separately managed (13 & 15). The Federal

Supply Class identifies which commodity group the item

belongs to (15).

A subset of the recoverable spares identified by the

SMR code are placed on the Initial Spare Support List

(1SsL).
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ISSLs include those provisioned items which the
equipment specialist and the using command agree should
be stocked and on-hand for support of operations and
maintenance at the operational location [emphasis
added] when the first items become operational.
(Reynolds, 1989:15)

The "operational locations" must have a stock quantity

of at least one for every spare identified on their ISSL

(24).

Identifying the "range" of spares required is only a

partial fulfillment of the initial spares provisioning

objective. The "depth," or number of spares required must

also be computed. AFLCR 57-27, Initial Requirements

Determination, is the governing regulation for determining

the quantity of new spares (those not already stocklisted).

The computations associated with AFLC Form 614, "Recoverable

Item Initial Requirements Computation Worksheet," are the

"standard" methodology for determining the depth of required

spares; but other computerized models may be authorized by

AFLC/XRI on an exception basis (20). In fact, according to

one source (Dement, 1990:Sec 3), XRII (then MMIE) recommends

the use of the Mod-Multi-Echelon Technique for Recoverable

Item Control (Mod-METRIZ) model. This model, discussed in

appendix C, was used on both the F-15 (Huff, 1979) and F-16

(27) fighter aircraft programs.

The AFLC Form 614 computations make use of provisioning

factors supplied by the ALC Equipment Specialist (16) and

information relating to the aircraft's "operational use"
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supplied by the Systems Program Manager (18) to determine

the spares requirements.

The provisioning factors are based upon contractor

input and the knowledge and experience of the Equipment

Specialist. The following factors are used in the process

of determining initial spares requirements:

a. Maintenance factor,

b. Overhaul replacement percent,

c. Base condemnation percent,

d. Depot condemnation percent, and

e. Not reparable this station (NRTS) percent (16).

Maintenance Factor. The maintenance factor

estimates the rate of demand for a spare part. It is

defined as "the estimated average maintenance replacement

rate per operating program increment (OPI). The OPI is

either considered to be 100 operating hours or 1000 rounds

expended, whichever is appropriate" (16).

Overhaul Replacement Percent. The overhaul

replacement percent "represents the replacement rate for a

spare or repair part in the overhaul of the next higher

assembly (NHA)" (17). This estimated percentage includes

those items replaced because they have failed and those

items replaced because they are deemed to be near failure.

This is analogous to an auto mechanic wanting to change

one's oil filter--not because it won't last a couple hundred

miles more, but because it isn't worth risking the
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catastrophic failure of one's engine for the price of a new

oil filter.

Base Condemnation Percent. This factor is, as the

name implies, the estimate of the percentage of spares which

will be condemned at the base repair level (17).

Depot Condemnation Percent. This factor is the

estimate of the percentage of spares replaced during depot

overhaul which are condemned (18).

Not Repairable This Station (NRTS) Percent. This

factor "corresponds to the portion of assets which are

authorized intermediate level repair which will have to be

returned to the depot for repair action" (18). The causes

for this vary but they include inadequate equipment and

labor skills and/or insufficient capacity at the

intermediate levels (18).

As stated previously, these factors, along with

operational program information collected by the System

Program Manager on checklists such as the AFLCR 57-27, are

then used in computations to determine spares requirements.

Figure 9 provides examples of these computations.

The AFLC Form 614 computations have, historically, been

a manual process. This process is being automated on a

system known as the Initial Requirements Determination (IRD)

system. The IRD is currently in system validation test and

should be on line by the end of the summer of 1991 (Homer,

1991).
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As previously stated, the AFLC Form 614 process is used

to predict requirements for spares which are new to the

inventory. These new spares are "assigned National Stock

Numbers (NSNs) for purpose of identification and management"

(11) and, if AFLC managed, their requirements are entered

into the D041 system for determination of replenishment

spares requirements. Some spares are acquired from Non-AFLC

agencies. These agencies will also stocklist their new

spares for managing future Air Force requirements (27).

Initial spares requirements must also be determined for

items already in the inventory. For those "existing" items

which are AFLC managed, the Item Manager uses the D041

system (used for replenishment spares calculations) to

determine any additional quantities required to support the

new aircraft (Horner, 1991; Rosenthal, 1991). The Item

Manager may use the AFLC Form 614 worksheet to determine

requirements for non-AFLC managed existing items and must

work with the non-AFLC agencies to determine if they have

adequate stocks for these parts (27).

Replenishment Spares Buy Requirements Determination

Unlike initial spares, where the budget process bares

little resemblance to the execution (provisioning) process,

replenishment spares budget forecasts are based upon the

same process (D041 calculations) used to execute the budget.

It is appropriate, therefore, to reverse the order of

presentation used for initial spares and begin this section
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by describing the D041 system used to calculate

replenishment spares buy requirements. Unless stated

otherwise, references in this section will come from a June

1987 AFLC training program entitled "Introduction to D041

Requirements System" (course # LMMIMO6).

The Recoverable Consumption Item Requirements

Computation System (D041) actually serves several functions.

In addition to determining buy requirements, D041

computations: 1) assist in managing depot repair

requirements, 2) develop Central Secondary Item

Stratification (CSIS) lists for spares budget development,

3) determine spares contract termination requirements, 4)

report excess requirements for disposal action, and 5)

provide for control of distribution of the spares

requirements (Ch 1, 5-6).

Figure 10 provides a summary level view of the basic

requirements computation process employed by D041. The

methodology is similar to that used for initial spares

provisioning (AFLCR 57-27) in that factors are developed to

predict future requirements. It differs, however, in that

the initial spares provisioning factor estimates are

typically manually developed by the ALC equipment * I

specialists based upon contractor inputs and their own

expertise, while the automated D041 factors can be updated

based on historical usage recorded during the initial spares

coverage period (an average of two years worth of data).

Figure 11 provides examples of the D041 requirements
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* USAGE / PAST PROGRAM FACTOR

* FACTOR x FUTURE PROGRAM PROJECTED USAGE

* PROJECTED USAGE

+ STOCK LEVELS

+ WAR READINESS MATERIALS

+ ADDITIVE REQUIREMENTS

- GROSS REQUIREMENT

* GROSS REQUIREMENT

- ASSETS (Serviceable assets plus base and
depot repairables)

= NET REQUIREMENT

Figure 10. D0'fI Requirements Determination
MeI.hodology (Ch 1, 2 & Ch 7, 1)

computation factors. These factors, developed on past

usage, are then applied to the projected future flying

programs to predict future spares requirements. Stock level

requirements, war readi.ness material requirements, and

additives are added to these predicted levels to arrive at

gross requirements. Serviceable assets on hand and those

projected to be repaired at base and depot facilities are

then subtracted to arrive at the net buy requirement (Ch 1,

1).
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The D041 system is actually at the center of numerous

other computerized systems that feed data into it. Chapter

10 of AFLCR 57-4 describes these input systems in detail.

There are three major categories of input data: 1)

programmatic information, 2) historical spares usage data,

and 3) inventory assets information. The "Worldwide Stock

Balance and Consumption Report" (SB&CR) provided by the D104

system provides two of these categories--usage and assets.

Because it is the major data contributor, the data cutoff

dates for the quarterly D041 runs are aligned with the SB&CR

cutoff dates--30 June, 30 September, 31 December, and 31

March (Ch 2, 2).

Each June D041 cycle contains quarterly spares

requirements forecasts for 25 quarters plus a three year

lump-sum retention estimate (9 1/4 fiscal years total). As

the fiscal year progresses, each passing quarter is dropped

from the computations until the following June cycle when

another fiscal year's (four quarters) forecast is added. In

this way the number of quarters included in the forecast

varies from 25 to 22 (and then back to 25) (Ch 7, 7).

For budgeting purposes, separate runs known as the

Central Secondary Item Stratification (CSIS) runs are

computed. Each June CSIS contains forecasts for the June

quarter and the following 12 quarters. The number of

quarters forecasted varies for each cycle in the same manner

described above (Ch 7, 8).
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These automated computations aro reviewed by the

inventory management and equipment specialists at the ALCs

for error correction and validation before they are

formalized. The specialists' interface with the D041 system

is known as "file maintenance" (Ch 2, 1-2). It is the

inventory management specialist who is ultimately

responsible for a computation's accuracy and, along with it,

the Air Force's support posture for the item (Ch 1, 1).

Replenishment Spares Budget Development

As stated previously, the repleikishment spares budget

forecasts are based upon the D041 system computations.

Near-term budgetary requirements such as the President's

Budget (PB) and Budget Estimate Submission (BES) inputs are

"scrubbed" versions of the D041 CSIS reports. According to

the Repairable Stock Division Progran Manager at HQ AFLC,

the scrubbing process which he and the ALC specialists

perform can involve numerous assorted modifications to the

CSIS. Besides corrections for proble~ms such as data entry

errors (a few stray zeros can really mess up a forecast),

changes are made to accommodate Congressional or

Headquarters Air Force direction concerning the size of the

budget. in one instance, the Office of the Secretary of

Defense (OSD) predicted that moving the replenishment spares

budget to a stock fund concept (DMRD 904) would save 10% of

the budget and therefore the spares ,udget was decremented

by 10%. In general, the budget is "scrubbed" so that, for
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whatever reason, an item's budgetary requirement does not

fall drastically out of line with its recent execution

experience. For example, it would be politically

unacceptable for an item which has experienced an annual

usage requirement of one million dollars for five straight

years to suddenly require (per D041) a ten million dollar

annual budget (Rosenthal, 1991).

Long range budget requirements for the Program

Objective Memorandum (POM) are also based on D041 CSIS

reports. The Air Logistics Early Requirements Technique

(ALERT) (described in more detail in Appendix C) has been

used since 1984 to develop POM inputs (Rexroad, Lucas, and

Collins, 1989: 1). This approach combines linear regression

and expert judgement to predict out-year requirements based

upon, among other -hings, the aggregated sum (aircraft

mission/design level) of past CSIS reports.

The expert judgement comes into play when the

Repairable Stock Division Program Manager "scrubs" the

output of the ALERT's linear regression-based models. This

scrubbing process is similar to that described earlier but

it also includes adding requirements for new items not

included in the D041 inventory. In those situations where

long range forecasts must be made for new items with no

historical usage database, ALC specialists must resort to

using factor-based computations similar to those prescribed

in AFLCR 57-27 (the initial provisioning bible) (Rosenthal,

1991).
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Relationship of Recoverable Spares to Life Cycle Phase

In discussing the differences between the initial

spares budgeting and provisioning methodologies, it was

briefly mentioned that they (the differences) resulted from

a lack of available data during the earlier budgeting phase.

This section will provide a more in depth analysis of the

relationship of recoverable spares cost estimating to an

aircraft's life cycle phase. The section begins with

definitions of the major life cycle phases and milestones.

Following this are subsections which relate these phases to

their effect on maintenance plan development, cost

estimating methodologies, and the different reasons for cost

estimating.

Definitions for Life Cycle Phases/Milestones. Figure

12 illustrates the different weapon system life cycle

phases. Before passing from one phase to the next, new

acquisition programs must be approved at major milestone

reviews (shown between the life cycle phases in Figure 12).

Unless specified otherwise, references in this subsection

will come from Captain Reynold's 1989 ISSL study.

The DoD components (e.g., Air Force, Army, etc.)

continuously monitor their capabilities in relation to new

mission requirements. Deficiencies may arise for numerous

reasons such as "obsolescence of existing systems, the

development of new technologies, (and] the emergence of new

threats" (51 & 53). Within the Air Force, the various major

commands identify changes in their operational requirements
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by coordinating (with other effected major commands) and

then publishing a Statement of Operational Need (SON) (53).

The Milestone 0 review authorizes the exploration of

alternative solutions to the SON.

Before discussing the subsequent phases and milestone

reviews a brief description of the milestone review process

may be helpful. The Air Force Systems Acquisition Review

Council (AFSARC) reviews the programs at each milestone and

makes its recommendations to the Secretary of the Air Force

(SAF). The DoD assistant secretaries and directors then

meet at the Defense Acquisition Board (DAB) to obtain

Secretary of Defense approval for continuing the program

into the next life cycle phase (TASC, 1989:Ch 14, 7).

During the concept exploration phase, program

management solicits industry to identify solutions to their

mission need. A Request For Proposal (RFP) is issued that

"includes complete information concerning the mission need,

the operational and threat environments, schedule and cost

goals, and capability objectives" (55). Each contractor

proposal is evaluated, and cost estimates are developed for

each alternative. Although the program is still in its

infancy, the decisions made as the result of these

evaluations will typically lock in about 70 percent of the

program's life cycle cost (60). For exam.ple, one

alternative may include developing a brard new weapon system

while another may recommend modifying or buying more of an
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existing system. Depending on which route (if any) is

taken, there can be a dramatic impact on life cycle costs.

Milestone I approval allows one or more proposed

programs (if funding is available) to proceed into the

demonstration and validation phase. During this phase paper

studies and/or prototype development are used to definitize

the system's design and technology (55). Though not as

dramatic as in the concept exploration phase, the tradeoff

analyses conducted in this phase still have a great impact

on life cycle cost. At the end of this stage, approximately

85 percent of the cost has typically been fixed (60).

Milestone II approval allows the system to enter into

full-scale development phase. "During this phase, the

system, including all essential support equipment and

documentation, is designed, developed, fabricated, and

tested" (56). Some programs are also granted permission to

begin low rate initial production (56). By this time the

opportunities to impact life cycle cost have been

substantially reduced and at the end of this phase, 95

percent of the costs have already been locked in (60).

Milestone III approval "commits the Air Force to buy

the system for operational deployment and moves the system

from the developmental environment into full production"

(56). It is during this phase that

mission hardware, support equipment, spares and repair
parts, personnel, facilities, etc. necessary to operate
and maintain the system are produced, acquired, and
assigned. (56-57)
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At milestone IV, the Logistics Readiness and Support

Review, the system is evaluated to see if it is functioning

according to contractual standards. If it isn't, this is

the time for the Air Force to exercise any warranties it may

have included in the contract. At this point the weapon

system enters the longest phase of its life cycle--the

operations and support phase. There is typically some

overlap of the production and operations phases because

production can be scheduled over many years (57).

The final milestone comes at that point in time when

the system is "no longer capable of meeting the operational

need for which it was acquired" (57). The Major Upgrade or

System Replacement Decision (milestone V) decides exactly

what its title says it does. Some systems, such as the B-

52, are kept in the operational inventory for many years

through major modifications; while others enter the final

phase of the acquisition life cycle--the disposal phase.

Maintenance Plan Development. One of the major

difficulties facing a life cycle cost analyst is that while

tradeoff decisions made during the earliest phases typically

have the greatest impact on life cycle casts, the

availability of data on which to baie the decisions is very

limited during this period. This is particularly true for

Operations & Support cost analysts who must attempt to

estimate O&S costs based on immature, ill-defined system

designs.
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The initial objectives for logistics support are

formulated in the concept exploration phase and developed

into a Integrated Logistics Support Plan (ISLP). These

objectives are refined and individual ISLPs are developed

for each alternative approved to enter into the

demonstration/validation phase of the contract (TASC,

1989:Ch 5, 8 & 11).

It isn't until completion of the full-scale development

phase, however, that the maintenance plan for a new system

is fully developed.

Until that time, the predicted parameters and desired
characteristics stated in the Maintenance Concept, will
not have been validated. It is virtually impossible to
effectively plan for Support and Test Equipment,
Spares, Technical Data, Prsonnel and Training
requirements unless the projected maintainability,
reliability, and repair level criteria for a given
system and its components have been confirmed. (TASC,
1989:Ch 5, 55)

It is obvious from the above quote that recoverable

spares are but one of many considerations which occupy the

minds of logistics planners. It is also clear that many of

the factors impacting spares cost estimating

(maintainability, reliability and repair level criteria) are

not confirmed until completion of the full-scale development

phase. It is important to understand these factors in more

detail because they are important cost drivers in

recoverable spares cost estimating.

"Maintainability refers to the ease with which a given

component/system can be maintained" (TASC, 1989:Ch 5, 18).
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This has obvious implications for maipower costs because the

"harder" a system is to maintain, tha longer it typically

takes to do the job. This is also related, however, to the

design of recoverable spare parts. Newer aircraft such as

the F-16 have been designed with modalar components that can

be quickly removed when broken and raplaced with serviceable

spare components to minimize the airraft maintenance

downtime (AFLCP 57-13, 1987:4).

Reliability is another major O&3 cost driver. It is

defined as

the probability that the system will satisfy the need
for which it was intended in an acceptable manner, for
a given period of time, when deployed and used under a
given set of operating conditions. (T A SC, 1989:Ch 5,
16)

It is easy to see where the reliability factors must be

speculative in the early concept exp'.oration phase. System

specifications which define "accepta'le" performance may not

be set in concrete and specific operiting conditions (e.g.,

temperature cycles, flying hour profLles, vibration

extremes, etc.) have not been defini:ized (TASC, 1989:Ch 5,

16).

Reliability is quantified throulh "terms such as: mean

time between failure (MTBF), mean tine between maintenance

(MTBM), and mean time between repair (MTBR)" (TASC, 1989:Ch

5, 17). The "maintenance factor" discussed in the earlier

section on initial spares provisioniig factors is based upon

another reliability factor known as mean time between demand
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(MTBD). While contractor data provides estimates for MTBF,

historical data has shown these estimates to be "overly

optimistic" (Reynolds, 1989:81). The MTBD is a derivative

of the MTBF which has been modified to account for demand

drivers not included in the MTBF. For example, the MTBF

does not include component failures beyond the contractor's

responsibility such as operator error and mishandling. Not

every failure leads to a demand and this also is accounted

for in the MTBD (Reynolds, 1989:81-82).

The levels of maintenance were also referred to in the

earlier discussion on initial spares provisioning. The SMR

code identifies what repair actions are permitted at what

repair level. As the number of locations with authority to

perform a repair action increases, greater numbers of spares

are required to maintain adequate working stocks at the

different repair facilities. "Level of Repair policies have

undergone continuous development and change since the

inception of the use of aircraft as a military component"

(TASC, 1989:Ch 5, 56). While there were four echelons of

repair in World War II, increased maintenance specialization

requirements reduced this number to the three level

structure--organizational, intermediate and depot--used by

most aircraft today. Today, further advances in the need

for "highly specialized personnel, test, recalibration,

repair equipment, and specialized facilities" are pushing

new systems toward a "two level concept" that centralizes

most maintenance at the depot level, "leaving only some
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test, plug-in replacement (i.e., circuit boards), and pre-

flight maintenance at the organizational/field level" (TASC,

1989:Ch 5, 57).

Cost Estimating Methodologies.

The availability of data with which one predicts costs

has an important impact upon the cost estimating methodology

used. The following major classes of cost estimating

methods will be briefly discussed in regards to this factor:

1) parametric, 2) analogy, and 3) engineering (or "bottoms-

up").

Parametric Models. Parametric models use

mathematical equations known as cost estimating

relationships (CERs) to identify the relationship betwee, an

item's cost (the dependent variable) and one or more

characteristics of that item (the independent variable(s))

(TASC, 1989:Ch 14, 25). These CERs are developed by

examining relationships exhibited in past data, and their

validity rests upon, among other things, the assumption that

the future conditions can be predicted based upon this

historical data set.

CERs can be useful in performing trade-off studies

during the early stages of an acquisition life cycle.

Although final system designs may not be available,

different characteristic values may be input into the model

to evaluate their effect on cost and design goals may be

substituted for firm characteristics. Great care, however,
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must be given to ensure that the CER's provide logical

conclusions. For example a CER might show that, based on

the sample data, engine maintenance costs are directly

related to engine size, as measured in thrust. For the new

engine being predicted this relationship may fail because

by increasing the size of the engine, as measured in
thrust, the engines can be operated at derated thrust
levels and thereby significantly reduce engine
maintenance costs. (May, 1982:Ch 3, 5).

The factor based approach to predicting initial spares

requirements discussed earlier is an example of a very

simple CER. In many cases, such as this one, CERs are

relied upon when insufficient data exists to conduct more

detailed analysis.

Analogy Method. This methodology depends upon

identifying a comparable or "analog-nzs' system to the one

being evaluated. Stated simply,

Analogy estimating begins with the actual cost of a
similar existing system, adjust these costs for
complexity, technical, or physical differences, and
then derives a new system estimate. (TASC, 1989:Ch 14,
27)

The difficulty in this method is in finding a truly

"similar" system and then knowing how to adjust costs to

account for the differences between the systems. Typically,

cost analysts must seek advice from technical experts to

evaluate these differences and their impact on cost.

Finding "experts" who are familiar with both the analogous
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system and the new system can be difficult and the "detailed

program and technical definition" of the new system may not

be available during the initial phases of the acquisition

life cycle (TASC, 1989:Ch 14, 27).

Engineering Estimation. This approach

"encompasses a detailed 'build-up' of labor hours, material

costs, and overhaul at very finite sub-indentures of the

program/activity/item for which cost is to be estimated"

(TASC, 1989:Ch 14, 28). As such, it provides the most

detailed and accurate cost estimates. Due to its

complexity, however, this approach also requires the

greatest amount of "calendar time" to perform, and very

Ae -c.' .s .j - data m-... be a. a'lab' fma.y, - -- -. .h 3, 8).

Since the Maintenance Plan for a new system is typically not

definitized until completion of the full-scale development

phase, the data required for this approach is not available

until that time.

It is frequently the case that a combination of

methodologies are used in predicting costs (TASC, 1989:Ch

14, 28-29). For example, an alternative (recommended by two

separate studies) to the factor based approach currently

used in estimating initial spares requirements is using the

Logistics Support Cost (LSC) model (Dement, 1990; Rexroad,

Tillia, and Tritle, 1990). The LSC model is an engineering

or "bottoms-up" model. Using this approach during early

life cycle phases requires that data from analogous systems

are modified and input into the model (Dement, 1990:Ch 2).
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By combining approaches in this way one can work around some

of the limitations unique to the individual methodologies.

Purposes for Cost Estimates. The cost estimating

mathodologies are not the only thing which may vary

depending upon the zcquisition life cycle phase, the purpose

behind the cost est.matE also varies.

The Program Cost Estimate (PCE), also known as the

Program Office Estimate (POE), is the "program manager's

official estimate o4 th! financial resources required to

competently conduct the program contained in its Program

Nanagement Directive (PAtD)" (TASC, 1989:Ch 14, 8). PCEs are

maintained throughout t'ie system's life cycle and are used

in all the program's

formal reports--baselines, Selected Acquisition Report
(SARs), Program Assessment Reviews (PARS), Command
Assessment Reviews (CARs), Secretarial Program Reviews
(SPRs), and financial reviews. (TASC, 1989:Ch 14, 8).

An Independent Cost Analysis (ICA) is a separate

e stimate performed by an "honest broker" with no ties to the

program office. It is used as a check for the

reasonableness of the PCE. "ICAs, by law, (DoD

Authorization Act of 1984) must be performed on major

defense acquisitions in support of Milestone Decisions"

(TASC, 1989:Ch 14, 8). ICAs are briefed to the Air Force

Cost Analysis Improvement Group (CAIG) which, in turn, pass

their recommendations along for AFSARC milestone decisions.

They are also briefed to the OSD CAIG which makes inputs to
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DAB milestone reviews. ICAs are also performed on selected

programs during the POM process. These e;timates are known

as Defense Resource Board (DRB) ICAs (TAS:, 1989:Ch 14, 8).

Additional estimates include: 1) The Should Cost

Estimate (SCE) which is developed for ind.vidual contracts

as a basis for the Government's negotiation objective; 2) A

Most Probable Cost is used during source selection to check

the reasonableness of bidder's cost propcsals; and 3) the

Single Best Estimate results when the IC and PCE processes

are combined to arrive at one estimate. Both program office

and staff cost analysts combine to form joint estimating

team (TASC, 1989:Ch 14, 9).

Data Sources for Recoverable spares Cost Estimating

Having discussed the different types of cost estimating

methodologies and the numerous purposes for which they are

developed, it is appropriate to address the data sources

available for developing recoverable spaies estimates. The

following remarks are based upon the res, arch conducted ir

support of this thesis. The sources wil be discussed in

the following order: 1) D041, the "Recov:rable Consumptio-i

Item Requirements System:" 2) H036C, the "Weapon System Cost

Retrieval System" (WSCRS); 3) visibility and Management of

Operating and Support Costs (VAMOSC); an- 4) Aeronautical

Systems Division (ASD) Cost Library.

D041 contains a tremendous amount of recoverable spares

data (e.g., usage and inventory data, reliability factors,
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item demand rates, condemnations, unit costs, etc.). There

were two major obstacles to using this data source for this

thesis, however. The primary obstacle was the fact that

D041 controls individual spares at the National Stock Number

(NSN) level. Since each aircraft contains thousands of

individual parts, it was impractical to attempt manual

aggregation of this data. The D041 system's Central

Secondary Item Stratification (CSIS) reports, used for

budget development, do provide spares requirements

aggregated to the Mission Design level. "Scrubbed" versions

of these reports were obtained from the Repairable Stock

Division Program Manager (HQ AFLC/FMBSR).

Other analysts have attempted to use the D041 data and

encountered the second major obstacle--D041 was not designed

to be a cost analysis tool and the mainframe based program

is not "user friendly." Very little computer time is

allotted to system inquiries and "what if" exercises. For

those brave enough to attempt analysis with D041, data is

provided on large agnetic tapes. In one instance, analysts

devoted a large amount of effort to learning the D041

software program and interpreting the data they received on

the magnetic tapes only to find that there were gaps in the

data rendering it useless (Dement, 1991).

The Weapon System Cost Retrieval System (WSCRS) was a

better source of data for this thesis. The WSCRS system

collects and assembles the historical depot maintenance
cost expenditures, and the base level and depot level
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condemnation cost expenditures, for the major USAF
aircraft and missile weapon systems. . . . WSCRS also
collects and assembles historical weapon system program
data by weapon system standard 4DS. The weapon
system's actual and programmed itilization data are
collected by fiscal year. (AFL.M 173-264, 1990:7)

Unlike D041, the WSCRS system was originally designed

and is maintained by HQ AFLC/FMC to 3upport cost analysis

projects (AFLCM 173-264, 1990:5). Request for WSCRS data

(which begins with FY 1975) must be addressed to HQ AFLC/FMC

and the data is provided in hard copy. Several different

aggregate levels of data can be requested, including mission

design series (MDS), fleet (MD), and mission (i.e., fighter,

bomber, cargo, etc.). Data can be further divided to weapon

system work breakdown structure (Steinlegy, 1991).

The VAMOSC system, as its name implies, was originally

designed in the mid-1970's to provide increased management

insight into weapon system costs (May, 1982:Ch 5, 1.3).

Through the years this system has been modified and updated

in order to fulfill its original promise. Several factors

have impaired this process and the system is still in need

of maturation.

Responsibility for VAMOSC has switched hands on

different occasions. The Air Force Cost Center is the

present OPR but they are looking for an alternative host

site. Manpower and facilities limitations have impaired

VAMOSC development at the Cost Center. When researched for

this thesis, only three quarters of data were input into the

VAMOSC automated system. Past history at the NSN level was

178



available on microfiche; but given the thesis time

constraints, this formidable aggregation task was even less

appealing than the D041 system (Masserro, 1991).

The ASD Cost Library was also briefly evaluated. It

appeared to be an Excellent source for identifying

historical cost methodologies used by various programs but

it contained very little cost data with which to conduct

original research.
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A _endix C: Models Which Predict Recoverable Spares Costs

Introduction

The purpose of this appendix is to evaluate selected

models which can be used to predict recoverable spares

costs. The intent is not to provide in-depth operating

instructions but rather to familiarize the reader with the

models and their applicability. While not exhaustive, the

appendix includes both engineering or "bottoms-up" models

and parametric models selected for: 1) their general (as

opposed to SPO specific) applicability, and 2) their

prominent use in the AFLC community [one parametric model,

developed by Rand Corporation, was included even though it

is not in "prominent" use. It was evaluated simply because

there were few parametric models in the literature review

and this model was evaluated by the AFLC "Initial Spares

Working Group" as a potential candidate for predicting

initial spares requirements]. The text begins with the

analyses for the following parametric models: 1) Rand study

2) Modular Life Cycle Cost Model (MLCCM); and 3) Air

Logistics Early Requirements Technique (ALERT). Next, the

following engineering models are evtluated: 1) D041, the

"Weapon System Cost Retrieval Systeri;" 2) AFLC Form 614, the

initial spares requirements computation form; 3) Logistics

Support Cost (LSC) Model; 4) Mod-Multi-Echelon Technique for

Recoverable Item Control (Mod-METRIC); and 5) Dyna-METRIC.
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A standard format is used during each analysis to simplify

comparisons between the models.

Rand Study

All references in this subsection, unless identified

otherwise, come from the developer's (see below) 1980

report, Estimating USAF Aircraft Recoverable Spares

Investment.

Developer(s): K.J. Hoffmayer, F.W. Finnegan, Jr., and

W.H. Rogers of the Rand Corporation, August 1980.

Model Purpose: The model is an update to a previous

1976 Rand model for estimating USAF aircraft recoverable

spares investment. It includes models for estimating total

replenishment spares requirements at the major subsystem

level (airframe, avionics, and propulsion) and for

estimating condemnation spares requirements at the same

level (v). An attempt was made to develop an initial spares

model but this was unsuccessful due to limited data

availability (23). The models provide annual estimates for

peacetime operating stock. War readiness material, spare

engines, and engine spare parts are excluded. The models

are intended for use prior to the preproduction or

deployment decision stages of the acquisition life cycle

(iii).

Model Algorithm: The study states that a logarithmic

form was chosen to develop the CERs due to its (logarithmic

CERs in general) superior handling of heteroscedasticity and
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its more "real world" multiplicativE nature (11, 15). They

fail to clearly state whether the transformations are

natural (in) or common (log) logarithmic in nature.

Table 17 shows the cost drivers used on each CER.

Table 17

Subsystem CER Independent Variables (12-14)

Airframe CER Avionics CER Propulsion CER

Total active Total active Total number of
aircraft in MDS aircraft in MDS installed engines
inventory inventory in the MDS force

Airframe flyaway Avionics flyaway Propulsion
cost cost flyaway cost

Peak flying hours Dummy variable for
per MDS per year bomber

Dummy variable for
reconnaissance

Dummy variable for
fighter/attack

Dummy variable for
cargo

Dummy variable for
tanker

The following logarithmic form is coirmon to each of the

subsystem CERs (11):

log Yit = log a +E, P log xijt + eit (12)

Where

Yit investment in POS spares inventory of aircraft
subsystem i at time t.

Xij= the ith characteristic observed on aircraft
subsystem i at time t.

z and = regression coefficients
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ei= the error for aircraft subsystem i :t time t.
The errors are assumed to be independent
across subsystems but correlated over time with
subsystem.

Data Inputs and Sources: Cost data from 1975 to 1978

was provided for the following aircraft (7):

A-7D C-5A RF-4C F-I1D
B-52D KC-135A F-4D F-111F
B-52G C-141A F-4E T-37B
B-52H F-4C F-!IA T-38A

Specific data elements and sources are as follows (4-5):

D041 "Recoverable Consumption Item Requirements System:"

National Stock Number (NSN)
Unit Price (in then-year dollars)
Program Begin Date (earliest record of use)
Program Selection Code (Material Program managing part)
Organization Field Maintenance (OFM) Total Demand
Rate (total item demand expressed in terms
appropriate for its material program)

Base Level Condemnations (NSN level condemnations at
base level)

Depot Level Condemnations (NSN level condemnations at
depot level)

Total Overhaul Condemnations (NSN level condemnations
resulting from planned overhauls)

Total Peacetime Operating Stock Assets
Application (the mission design series (MDS) or other

stock number using the item)
Quantity Per Application

J041 "Procurement History File:"

National Stock Number (NSN)
Contract Date
Amount of Contract ($)
Quantity Procured

"Aerospace Vehicle Inventory Status and Utilization and
Reporting System" (AVISURS):

Aircraft MDS
Calendar Year and Month
Flying Hours
Sorties
Landings
Average Number of Possessed Aircraft
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Other data used in the model development was obtained from

the following sources:

* TO 0025-30, Technical Manual, "Unit Cost of
Aircraft, Guided Missiles, and Engines."

* USAF Statistical Digests
* PA, "USAF Program, Aerospace Vehicles and Flying

Hours."

Assessment: The accuracy of the models provided are

difficult to assess due to the minimal coverage of model

diagnostics. The R2 provided for the propulsion model has

poor statistics: R2 of .5841 and SEE of .67318. Because " i

Rand does not specify which base was used (natural or

common) the reader is left to guess at the significance of

the standard error of the estimate (the SEE is a measure of

prediction accuracy for a transformation using the natural

base)(Murphy, 1990-1991).

It is unclear if the logarithmic form is really

appropriate because they never actually state that they

observed heteroscedasticity in the data; or why they feel a

multiplicative equation is more "real woj:ld". They fail to

document any diagnostics performed or other models attempted

and discarded.

The manner in which subsystem flyaway costs were

included in each of the subsystem CERs may be questioned.

One tenet of the integrated logistics support philosophy is

that as an item's reliability improves, the reduction in its

operations and support costs over its life cycle more than

compensates for its increased acquisition cost (which has

resulted from its improved reliability) (TASC, 1989:Ch 5,
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25). The multiplicative nature of the subsystem CERs does

not account for this belief logically. According to these

CERs, increased CERs will always result in greater spares

costs.

Although the source text does not explain its rationale

for using component flyaway costs, a case can be made that

life cycle O&S costs reduce with improved reliability for

reasons other than reduced spares requirements. After all,

replenishment spares costs are only a subset of the total

O&S costs. More reliable parts should fail less often and

therefore cost less for maintenance and repair. If RAND

believes that these types of savings exceed the increased

spares costs associated with more expensive components, then

their logic is not contradictory to reliability theory.

This methodology was evaluated by the Initial Spares

Working Group comprised of twenty two members representing

HQ AFLC, ASD and HQ AFS'. They concluded that the model's

database should be updated and a clear distinction made

between initial and replenishment spares before they could

use the model (Rexroad, Tillia, and Tritle, 1990:11).

Modular Life Cycle Cost Model llA j

All references in this subsection, unless specified

otherwise, come from Grumman Aerospace Corporation's 1986

report entitled Modular Life Cycle Cost Model for Advanced

Aircraft Systens, Cost Methodology Development and
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Application. The authors were R. Isaacs, N. Montanaro, and

F. Olivo.

Developer(s): Grumman Corporation, Program Team

directed by Mr. R. Isaacs, September 1986.

Model Purpose: The MLCCM is a parametric-based series

of models for

predicting advanced technology aircraft costs, to the
major subsystem levels, for the Research, Development,
Test, and Evaluation, Production, Initial Support, and
Operations and Support phases of the system life cycle
during conceptual and preliminary design. (iii)

Initial and replenishment spares are but subsets of the

overall costs within the production and O&S periods,

respectively. Their cost is broken out for 14 subsystems

(structure, crew system, landing gear, flight control, cargo

handling, engines, engine installation, environmental

control systems, electrical, hydraulic/pneumatic, fuel

system, avionics, armament, auxiliary power unit) (11) for

two classes of aircraft (fighter/at:ack/bomber and

cargo/transport/ tanker)(x).

Model Algorithm: Because the MLCCM was developed as a

tool for conducting trade studies during the design stage,

the CERs were developed using a Work Breakdown Structure

(WBS) format. In this way the design engineers would be

able to relate costs to the WBS elements for which they were

responsible. Step-wise regression was used to develop le,g-

linear regression equations. Again, it is unclear if they

used natural or common base transformations. They limited,
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for most cases, the number of parameters in any CER to one

third the number of data points (47-48). While it makes

sense to preserve degrees of freedom by limiting the number

of variables used (compared to the number of data points),

it isn't clear why the developers chose one third as the

criteria ratio. The developers provide no explanation for

this criteria.

Data Inputs and Sources: Cost data was derived from

several sources including: "Visibility and Management of

Operating Support Costs" (VAMOSC) system, AFR 173-13

Factors, and the 1975/1976 Operating and Support Cost

Estimating Report. Independent variable technical data

sources include: Standard Aircraft Characteristics (SAC)

charts, group weight statements, technical orders, and the

manufacturer.

The SAC charts were used to obtain data on engine
design and performance, fuel and tankage, armament,
loading and aircraft performance, development dates,
etc. Weights, areas, volumes, dimensions, and general
aircraft design characteristics were obtained from the
group weight statements and the manufacturers. Flight
manuals were used for data on electrical, fluid power,
and flight actuator systems and for general aircraft
design characteristics as well [note that not all of
these variables are used in the replenishment spares
CERs]. (13)

Assessment: The fact that the models were developed

with obligation data brings with it all tLe uncertainty

previously discussed in the data problem section. The

report admits the need for better cost data inputs (219).
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The model statistics provided were not complete. R

values were provided as opposed to the R2 statistic commonly

seen. The R2 values for 5 of the 14 subsystems in the

fighter/attack/bomber class of aircraft were poor (less than

.7) (165-169). No discussion of model diagnostics was

provided.

Air Logistics Early Requirements Technijue (ALERT)

Unless stated otherwise, references in this subsection

will come from a 1989 report entitled Air Logistics Early

Requirements Technique (ALERT) FY90-94 Proqram Objective

Memorandum (POM) Forecast. The authors were Adrienne

Rexroad, Robert Lucas, and Larry Collins.

Developer(s): AFLC/MMM, 1984.

Model Purpose: ALERT has been used since 1984 by HQ

AFLC as the starting point for developing BP15 aircraft

peacetime spares Program Objective Memorandum (POM) inputs.

It is the "starting point" because the output from ALERT is

scrubbed by the BP15 Program Manager prior to its submittal
(1). 1

Model Algorithm: The CERs developed used straight

linear regression to predict the first year of requirements.

This first year's estimate is then used as historical input

for the next four years' predictions--a regression technique

which referred to as "bootstrapping." (2).

Data Inputs and Sources: The dependent variable data

used were the requirements submitted in the last Budget
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Estimate Submission (BES). There were a total of four

independent variables used (not all at once) in the CERs: 1)

Mission Design Series buy requirements from the D041

"Recoverable Consumption Item Requirements System," 2)

Average Fleet Value, as calculated by USAF/AC, 3) the

reciprocal of the estimated Present Fleet Age, also provided

by USAF/AC, and 4) Chronological Year.

Assessment: Only six of the sixteen weapon system

class CERs had adjusted R2 values exceeding .7 and only one

class exceeded .75. The BP Manager scrub that followed

subsequent to the ALERT run changed the input values

further. The BP Manager is critical of the D041 input data

since it uses the June data run (a quarter not updated by

three of the five ALCs). He also questioned the logic of

using the fleet value as a cost driver. USAF/AC based their

estimate of fleet value on projected future flying hour

programs which decrease over time. The fleet values,

therefore, decrease over time. The spares requirement,

however, logically gets larger as the fleet gets older (7).

D041

Unless stated otherwise, references in this subsection

will come from a June 1987 AFLC training program

entitled "Introduction to D041 Requirements System" (course

# LMMIMO6).

Developer(s): Unidentified. Managed by HQ AFLC/MM

(Material Management Division).

189



Model Purpose: The Recoverable Consumption Item

Requirements Computation System (D041) actually serves

several functions. In addition to determining buy

requirements, D041 computations: 1) assist in managing depot

repair requirements, 2) develop Central Secondary Item

Stratification (CSIS) lists for spares budget development,

3) determine spares contract termination requirements, 4)

report excess requirements for disposal action, and 5)

provide for control of distribution of the spares

requirements (Ch 1, 5-6).

D041 can hardly be classified as simply a cost model.

Because it is the system used to execute the replenishment

spares budget, however, other cost models, such as the

Logistics Support Model, are compared to D041 to validate

their results (Alexander, Brookey, Erhart, Fulton, Hofmann,

and Shutak, 1990:1-2; Dement, 1990). For this reason it is

included in the appendix

Model Algorithm: Figure 13 provides a summary level

view of the basic requirements computation process employed

by D041. The methodology is similar to that used for

initial spares provisioning (AFLCR 57-27) in that factors

are developed to predict future requirements. It differs,

however, in that the initial spares provisioning factor

estimates are typically manually developed by the ALC

equipment specialists based upon contractor inputs and their

own expertise, while the automated D041 factors can be

updated based on historical usage recorded during the
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* USAGE / PAST PROGRAM : FACTOR

* FACTOR x FUTURE PROGRAM = PROJECTED USAGE

* PROJECTED USAGE

+ STOCK LEVELS

+ WAR READINESS MATERIALS

+ ADDITIVE REQUIREMENTS

- GROSS REQUIREMENT

GROSS REQUIREMENT

- ASSETS (Serviceable assets plus base and
depot repairables)

NET REQUIREMENT

Figure 13. D041 Requirements Determination
Methodology (Ch 1, 2 & Ch 7, 1)

initial spares coverage period (an average of two years

worth of data). Figure 14 provides examples of the D041

requirements computation factors. These factors, developed

on past usage, are then applied to the projected future

flying programs to predict future spares requirements.

Stock level requirements, war readiness material

requirements, and additives are added to these predicted

levels to arrive at gross requirements. Serviceable assets

on hand and those projected to be repaired at base and depot
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facilities are then subtracted to arrive at the net buy

requirement (Ch 1, 1).

Data Inputs and Sources: The D041 system is actually

at the center of numerous other computerized systems that

feed data into it. Chapter 10 of AFLCR 57-4 describes these

input systems in detail. There are three major categories

of input data: 1) programmatic information, 2) historical

spares usage data, and 3) inventory assets information. The

"Worldwide Stock Balance and Consumption Report" (SB&CR)

provided by the D104 system provides two of these

categories--usage and assets. Because it is the major data

contributor, the data cutoff dates for the quarterly D041

runs are aligned with the SB&CR cutoff dates--30 June, 30

September, 31 December, and 31 March (Ch 2, 2).

Assessment: It is difficult to evaluate D041 without

examining the many contlibuting systems which feed into it.

For example, the Modified Dyna-METRIC model provides factors

used by D041 for determining War Readiness Spares Kits

(WRSKs) (Oster, Sakulich, and Stone, 1989:3). Additionally,

D041 uses inputs from the Aircraft Availability Model (AAM)

to determine its base safety level stock (Alexander,

Brookey, Erhart, Fulton, Hofmann, and Shutak, 1989:IX-16).

As a result, D041 snares in the same benefits and drawbacks

associated with its input systems. In the preceding

examples, both models allow D041 to optimize the repair

capability gained for these spares categories within a given

budget constraint. Marginal analysis techniques are
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utilized to examine the relationship between final

assemblies (e.g., a "black box"), known as the line

replaceable units (LRUs), and their various, less expensive

components (e.g., a circuit board), known as shop

replaceable units (SRUs) (Alexander, Brookey, Erhart,

Fulton, Hofmann, and Shutak, 1989:IX-16; Oster, Sakulich,

and Stone, 1989:2). If the components within an assembly

that are most likely to fail can be identified, it is more

economical to stock a number of the SRUs rather than

purchasing numerous, more expensive LRUs to arrive at the

same amount of repair capability.

As previously stated, the D041 system is the standard

by which other models are evaluated for their validity.

That is not to say that it is a perfect system by any means.

The D041 product used for budget development, known as the

Central Secondary Item Stratification (CSIS) report, must be
thoroughly scrubbed by the Repairable Stock Division Program

Manager and the ALC inventory management and equipment

specialists. According to the Repairable Stock Division

Program Manager, it is not uncommon for the CSIS reports to

contain numerous errors (e.g., data entry problems) that,

before being "scrubbed," predict requirements which are

substantially off the mark (Rosenthal, 1991).

The D041 system was also not designed as a cost

estimating tool. It manages recoverable spares down to the

Federal Stock Number level and it can aggregate requirements

to the aircraft mission design level. It has no built in
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capability to aggregate its data to other levels (such as

work unit code, for example). For this reason it is

impractical to think of the D041 as a cost estimating tool.

It is too inflexible to perform what-if type exercises and

very little computer time is made available for system

inquiries (Artley, 1991).

AFLC Form 614

Unless stated otherwise, references in this subsection

will come from a 1989 report entitled Analysis of Initial

Spares Support Lists (ISSL). This report was written by a

team headed by Captain Steve Reynolds.

Developer(s): Unidentified. Policy for initial

requirements determination is made by HQ AFLC/MMMIE. The

AFLC Form 614s have, historically, been manually prepared.

This process is beirg automated by XRII on a system known as

the Initial Requirements Determination (IRD) system. The

IRD is currently in system validation test and should be on

line by the end of summer 1991 (Homer, 1991).

Model Purpose: The AFLC Form 614 computations are the

"initial spares" equivalent of the those performed by D041

to determine replenishment spares buy requirements. Unlike

D041, however, the AFLC Form 614 process has not been used

in the budget development process. Initial spares budgets

are developed using a factor based approach that relates

spares requirements to aircraft flyaway costs (Rexroad,

Tillia, and Tritle, 1990:1). This approach has been used
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because the numerous data inputs required in the AFLC Form

614 process are typically not available until completion of

the full-scale development life cycle phase (TASC, 1989:Ch

5, 55). Budget wedges must be estimated prior to this time

and so HQ AFLC/FMBSR, the agency responsible for the initial

spares budget, has fallen back on the factor based approach.

The factor based method has been criticized for its

lack of lack of insight into underlying causal relationships

and alternative cost models are being evaluated as

candidates to replace it. The Logistics Support Cost (LSC)

Model (the next model evaluated in this appendix) has been

recommended by two studies for this purpose (Dement, 1990;

Rexroad, Tillia, and Tritle, 1990). The LSC model, however,

presents the same data input scarcity problem which has

prevented the AFLC Form 614 process from doing the job all

along. Although the AFLC Form 614 process has not been used

as a cost estimating tool in the past, it is included in

this appendix because it seems that the same work around

being suggested for the LSC data problem (i.e., using data

from analogous systems (Dement, 1990:Ch 2)) would work for

it also.

Model Algorithm: The AFLC Form 614 computations are

similar in nature to the D041 computations. As stated in

the D041 analysis, the provisioning factors used in the AFC

Form 614 computations are estimates based upon contractor

inputs and the expertise of the equipment specia.list(s)

making the estimate. This contrasts with the D041 factors
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which may be adjusted based upon observations of the items'

performance during the initial spare coverage period (an

average of two years) (16). Figure 15 provides examples of

the AFLC Form 614 requirements computations.

Data Inputs and Sources: The following provisioning

factors are provided by the equipment specialist(-) during

Athe provisioning process:

Maintenance Factor
Overhaul Replacement Percent
Base Condemnation Percent
Depot Condemnation Percent
Not Reparable This Station (NRTS) Percent

In addition to these factors, information concerning

the weapon system's operational program is collected by the

System Program Manager on checklists such the AFLCR 57-27

(18). Together, these data providE the inputs required to

compute the AFLC Fcrm 614 initial spares requirements.

Assessment: Besides the previously mentioned data

availability problems, there are two important deficiencies

inherent in the AFLC Form 614 process that were identified

in Capt Reynold's SSSL study.

The first problem is that the 614 worksheets do not

maximize the repair capability Zor a n budget

constraint. The reason this is so is that no consideration

is given to the LRU/SRU indenture relationships (41). It

is probable, therefore, that a better mix of LRUs and SRUs

could provide the same amount of repair capability at a
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cheaper price; or, using the same budget, a greater repair

capability could be obtained.

The second problem is that the 614 worksheets have "no

direct linkage to readiness and availability obj):.ti:3v as

required b- DoD mandate (DODI 4140.42)(4.). The 614

worksheet computations attempt to fill backorders for :tems

durir the initial spares co.erage period, but there is no

direct link made between filling backorders and neeting a

readiness objective. Not all parts are critica. for an

aircraft to be "ready" or "available" to perform its

mission.

Logistics S upport Cost (LSC) Model

Unless stated otherwise, references in this subsecticn

will come from an independent validation of the LSC Model

(version 2.0) performed "y Management Consulting & Research,

Inc. (MCR). The final Leport, written by Areve B.

Alexander, Lori E. Brookey, Robert J. Erhart, Sarah J.

Fulton, Dr. Jerry D. Hofmann and Michael D. Shutak, is dated

15 Yay 1990.

Developer(_: Original version (1.0) was developed in

1975 by the Air Force Air Logistics Division (AFALD) to run

on a mainframe computer (II-l). The current personal

computer based version (2.2) was released in 1991 and

developed by HQ AFLC/FMC (then ACC) (Passage, 1991).

Model Purpose: The current LSC model can be used to

provide estimates for the following life cycle costs: 1)
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initial spares (including base and depot safety stock), 2)

replenishment spares, 3) depot maintenance, 4) second

destination transportation, and 5) Repair Support Division

(RSD) Stock Fund (Passage, 1991).

The LSC model is accepted as a valid estimating model

by both the AF and OSD Cost Analysis Improvement Groups

(CAIG). Among its recent applications, the LSC model was

used to perform independent cost analyses for the Advanced

Tactical Fighter (RTF), C-17, Global Positioning System, and

Joint Stars program offi'.es (Passage, 1991).

Model Algorithm: The L-3 model performs computations

similar to those used by '041 and the AFLC Form 614 process.

It provides cost estimates for individual reparable items

(LRU or SRU) and then aggregates these ccsts to the

subsystem and system level (ITI-2).

Numerous assumptions are incorporated into the LSC

model. A selection of these assumptions include:

1) "The logistics support processes and costs of an
item are mathematically independent of those of
other items, even items physically related to it"
(111-2).

2) "The support cost calculation of one item does not
affect the support costs calculation for any other
item" (111-2).

3) "The model assumes the standard USAF maintenance
concepts for the repair of ruparable components
from aircraft apply" (111-3). For this reason, the
model can handle three level or two level
maintenance scenarios.

4) A Poisson probability function is used in the
modeling of queues (111-8).
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5) Little's equation is used to calculate the number
of items repaired monthly at the intermediate level
(111-7).

6) The intermnediate level repair process meets the
following requirements:

a. The number of arrivals per unit of time is
described by a Poisson distribution.

b. Customers are served in order of arrival.

c. There is one server or serving facility.

d. The mean arrival rate is less than the mean
service rate.

e. The waitinc space for customers is infinite;
that is, nc customers are turned away or leave
of their oun accord, due to limited waiting
space or slow service times.

f. The population of customers is finite.

g. Service times are describe by a deterministic
distribution function. (111-9)

Figure 16 provides examples of the computations used by

the LSC model.

Data Inputs and Sources: The LSC model contains five

data input files: 1) system; 2) hardware; 3) cost; 4)

support equipment; and 5) SRU factor file. Tables 18

through 20 identify required data inputs and data sources

for three of these files to illustrate the large amount of

data required in the LSC model [the system file, not shown

below, contains another 29 data inputs]. It is the large

number of data inputs wlich prohibits this type of model

from being used in the Early acquisition phase without

resorting to analogous systems data or design goals to

complete the data files.
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Table 18

LSC Hardware File Inputs & Sources

DATA INPUT I SOURCE

# of subsystems SPO/SPM

WUC identification SPO/SPM/ALD

System name SPO/SPM/ALD

# of LRU/SRU records SPO/SPM/ALD

Design or target mean time to SPO/SPM/ALD
repair at the organizational
level

Design of target mean time SPO/SPM/ALD
between removals

Engineering change order LSC USER
indicator

WUC identification of LRU/SRU SPO/SPM/ALD

Description or r.ame of SPO/SPM/ALD
LRU/SRU

Stocklisted item indicator SPO/SPM/ALD

Quantity per application SPO/SPM/ALD

Expendability, LSC USER
recoverability, reparability
category (ERRC) record to be
read from System File

LRU/SRU mean time between SPO/SPM/ALD
removal

LRU/SRU mean time between SPO/SPM/ALD
demand

Average # of hours for depot ALC/SPO/SPM/ALD
to repair an SRU from this
LRU
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Table 18 (Continued)

LSC Hardware File Inputs & Sources (Passage, 1990)

DATA INPUT I SOURCE

Not reparable this station % SPO/SPM/ALD

Base condemnation rate SPO/SPM/ALD
Depot condemnation rate ALC/SPO/SPM/ALD

Average # of labor hours to ALC/SPO/SPM/ALD
repair this item at the depot

Labor rate for Interim SPO/SPM/AFLCP 173-10
Contractor Support (ICS) or
RIW repair

Fraction of time this LRU is ALC/SPO/SPM
repaired at base by removal
of an SRU and sending an SRU
to depot

LRU/SRU weight (in Ibs) SPO/SPM/ALD

SRU indicator: 1 = LRU with SPO/SPH/ALD
unknown SRUs; 2 = LRU with
SRU data to follow; 3 = item
is an SRU

Utilization Factor - ratio of SPO/SPM/ALD
operating hours to flying
hours

User defined category LSC USER
indicator

Derating index indicator LSC USER
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Table 19

LSC Support Equipment File Inputs & Sources (Passage, 1990)

DATA INPUT {SOURCE
Index value identifying type SPO/SPM/ALD
of support equipment (SE)

# of years of SE costs LSC USER

Cost of SE inherited from SPO/SPM
another Program

Cost of SE developed for this SPO/COST TEAM
Program

Table 20

LSC Cost File Inputs & Sources (Passage, 1990)

DATA INPUT -. . SOURCE - ___-

5 digit Work Unit Code (WUC) SPO/SPM/ALD
matching Hardware File WUC
for same item

# of cost fields on this line LSC USER

Lot average unit cost for SPO COST TEAM
each year specified by second
input above

Assessment: As previously stated, the LSC model has

been approved for use by both the AF and OSD CAIGs and it

was independently validated by MCR. The LSC was one of the

two models chosen (out of a group of six alternatives) by an

Initial Spares Working Group as an alternative to the

current factor based approach to developing initial spares

budgets (Rexroad, Tillia, and Tritle, 1990). Another study

performed by Capt Anne Dement, an ALD operations research

analyst, attempted to validate the use of a demand based
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budget estimating model (i.e., the LSC model) during the

early acquisition p, ,es by using it to estimate initial

spares costs for the Advanced Tactical Fighter. According

to the report's Executive Summary, "the test showed the

approach was executable, provided a reasonable estimate, and

offered several significant advantages over current

estimating techniques" (Dement, 1990).

Even with all of these factors in its favor, the LSC

model is still not without its shortcomings. Like the AFLC

Form 614 process, the LSC model has no marginal analysis

capability to optimize the LRU/SRU mix for a given budget

constraint. The model also doesn't include spares required

for programmed depot maintenance and component overhaul in

its calculations (Dement, 1990:Append 1, Sec 2.2.2).

Finally, the out of production and demand volatility factors

used in the model need additional analysis to validate them.

In both cases these factors make significant contribution to

the overall spares requirements and yet little research has

been conducted to validate their default values [see Chapter

two of this thesis for a description of the demand

volatility factor history].

Mod-METRIC

Developer(s): John A. Muckstadt developed Mod-METRIC

based upon the earlier Multi-Echelon Technique for

Recoverable Item Control (METRIC) developed by Craig C.

Sherbrooke of the RAND Corporation (Muckstaadt, 1973:472).
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Model Purpose: While METRIC was designed for

determining both the requirements and distribution of

recoverable spares in a two-echelon (base and depot)

inventory system (Muckstadt, 1973:472), Mod-METRIC also

"permits two levels of parts to be considered, an assembly

and its components" (Muckstadt, 1973:474). In other words,

Mod-METRIC uses marginal analysis techniques to identify the

optimum mix of LRUs and SRUs for a given budget constraint.

Current Mod-METRIC applications include "initial

provisioning, engine requirement computations and

redistribution of spares" (AFLCP 57-13, 1987:3).

Model Algorithm: Keeping weapon systems in serviceable

condition is the goal of the Air Force maintenance process

described in this paragraph (AFLCP 57-13, 1987:3-4). Modern

weapon systems have modular designs to allow failed LRUs or

SRUs to simply be removed and replaced from the base stock

of serviceable spares. The stock is replenished when the

base repairs the failed item and places it in the stock. If

the base cannot repair the item, it is sent to the depot for

repair and the base requests that its serviceable spares

stock be resupplied from the depot stock. It is clear that

the stock levels of serviceable items impact the performance

of this system. If demanded items cannot be supplied from

the base stock, the aircraft goes into not mission capable

(NMC) status until the item is: 1) repaired at the base

level, 2) repaired at the depot level, or 3) obtained from

the depot stock (if ava:.lable). When items demanded at the
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base level cannot be supplied from base stock, the items are

considered on backorder. One backorder day equates to one

item on backorder for one day (AFLCP 57-13, 1987:8).

Both METRIC and MOD-METRIC model this maintenance

process. The objective function for METRIC is to determine

the amount of LRU stock and where to place it (base or

depot) that will minimize the number of backorder days for a

given budget constraint (AFLCP 57-13,1987:10). The

objective function for MOD-METRIC focuses on a single LRU

and determines the optimum mix of the LRU and its associated

SRUs that will minimize the number of backorder days for the

LRU for a given budget constraint [Another METRIC based

model known as COMBINE supplements tie MOD-METRIC model to

solve problems with many LRU-SRU groups considered

simultaneously] (AFLCP 57-13, 1987:1)).

Both METRIC and Mod-METRIC have the same assumptions

(AFLCP 57-13,1987:8):

a. No lateral resupply betweer bases.
b. No batching of items before repair is started
on an item (infinite channel queuing assumption).
c. The level at which repair is performed depends
only on the complexity of the repair, not on
existing workload.
d. Repair times are statistically independent.
e. A stationary compound Poisson probability
distribution describes the demand process for
each item.
f. Simultaneous failures of SRUs do not occur.
g. A failure of one type of item is statistically
independent of those that occur for any other type of
item.

Both the METRIC and MOD-METRIC models employ operations

science techniques such as Lagrangian multipliers and
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Fibonnacci searches. The scope of this paper limits the

following algorithm discussion (AFLCP 57-13, 1987:9-10) to a

more general level. As previously stated, METRIC determines

optimum LRU stock levels for a given budget constraint.

Because partial LRUs are not considered, the cost of the

stock level will probably not equal the budget constraint

exactly. The Lagrangian multipliers are part of a marginal

analysis process that evaluates the reduction in backorders

per additional dollar invested in the various LRUs which

compose the weapon system and provides a solution very close

to the budget constraint. The model then increments the

budget and determines the optimum stock level for the new

budget constraint. This allows one to plot backorder

performance versus cost.

The MOD-METRIC model has the added complexity of

evaluating the optimum mix of an LRU and its SRUs. The

available budget is first allocated between purchasing whole

LRUs and the associated SRUs using the Fibonnacci search.

After a portion of the budget has been allocated to SRUs,

the same marginal analysis employed by METRIC is used to

determine the optimum number of the various SRUs which

compose the LRU and to distribute these SRUs between the

bases and the depot. The budget is then incremented and the

process is repeated for the new budget constraint. Again,

performance versus cost can be plotted.

Data Inputs: Data files for running mod-METRIC can be

created at HQ AFLC using CREATE (a Honeywell 6000 series
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computer). Mod-METRIC may be run froim other systems given

that specific formats (addressed in -hapter eight of AFLCP

57-13) are adhered to in developing he data files. The

following data inputs are required (,XLCP 57-13, 1987:15):

Flying hour program data:

1) Number of bases.
2) Flying hours per month )er base.
3) Order and shipping time per base.

Recoverable item data:

1) Identification.
2) Unit cost.
3) Mean time between demant.
4) Not repairable this sta:ion percentage.
5) Condemnation percentage.
6) Quantity per next highe: application.
7) Base repair time.
8) Depot repair time.
9) Procurement lead time.10). Item-dependent order and ship time.

Computer program control data: This data category

refers to information provided by th user when prompted by

a series of questions from an interaztive preprocessor

called BUILD. The answers to these juestions (e.g., user-

id, target budget value, size of inc:ement between

successive budgets evaluated, etc.) are required for the

program to know the specifics of what type of output the

user is seeking (AFLCP 57-13, 1987:15-17). 4

Assessment: The F-15 program was one of the first

weapon systems to employ the MOD-METRIC model. Previous

weapon systems made use of the methodology prescribed in

AFLCR 57-27 (still an accepted approach). This methodology

"was written and published when maximum-base-self-
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sufficiency was an accepted maintenance concept" (Huff,

1979:9). This concept does not allow for optimization of

resources because individual bases, using this approach,

tend to purchase more LRUs and less SRUs to prevent LRU

backorders. More repair parts are required at each base in

order for them to be self-sufficient. The MOD-METRIC model

is credited as one of the factovs behind the F-15 program's

ability to complete initial spares provisioning within

budget (Huff, 1979:10-11).

The Mod-METRIC model is not without limitations,

however. Because the Mod-METRIC model assumes that demand

is described by a stationary compound Poisson probability

distribution and that each item is equally critical, critics

argue that the use of backorders to approximate aircraft

availability is not adequate. The Dyna-METRIC model was

developed after Mod-METRIC to accommodate for the dynamic

requirements process (e.g. surge requirements in a war-time

scenario) and the differing criticality of different spares

(Mills, 1985:11).

Dyna-METRIC

Unless stated otherwise, all references from this

subsection will come from a 1988 RAND Corporation report

entitled, Dyna-METRIC Version 4 Modeling Worldwide Logistics

Support of Aircraft Components. The authors were Karen E.

Isaacson, Patricia Boren, Christopher L. Tsai and Raymond

Pyles.
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Developer(s): The Dyna-METRIC moel has evolved as the

result of several RAND Corporation projects dating back to

the 1970's. R. J. Hillestad and M. J. Carrillo are credited

with the "theoretical development of the dynamic queuing

equations that form the heart of Dyna-RETRIC Hillestad,

1982:5). The Headquarters Air Force Logistics Command

Management Sciences Division (HQ AFLC/XPS) is responsible

for the current version of the model (iii).

Model Purpose: Dyna-METRIC is a readiness, or

availability, based model that "relates logistics resources

and policies to wartime readiness" (V). It was developed

for logisticians to assess the impact of "wartime dynamics

and repair constraints and provides operational performance

measures, problem detection, and spares requirements" (V).

Dyna-METRIC will soon replace Mod-METRIC as the model used

to determine whole engine and engine module requirements

(both wartime and peacetime requirements). Additionally,

code is currently being written to incorporate Dyna-METRIC

into the Logistics Support Cost (LSC) model. This will

change the LSC from a pure demand based approach to one that

uses marginal analysis to maximize improvements in

availability per dollar spent (Niklas, 1991). Dyna-METRIC

allows one to model three echelons of maintenance repair and

three indenture levels of components (V).

Model Algorithm: Dyna-METRIC allows one to predict the

number of aircraft components that are flowing from point to

point in the repair process (i.e., through repair
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"pipelines"). Central ,.o these predictions is the delay or

processing time these components must spend in each pipeline

segment. "The expected number of components in oach

segment, then, depends on the rate at which demands occur

and the time the components spend in each segment" (VI).

Dyna-METRIC uses the user-supplied pipeline variance to

mean ratio (VTMR) to determine what type of distribution to

use to predict the number of components within a pipeline

segment. A VTMR of less than one corresponds to a binomial

distribution. A VTMR of one suggests a poisson

distribution, and a VTMR of greater than one suggest a

negative binomial distribution. These distributions are

used by the model to "recommend st, 1 levels for components"

and "to predict performance at each base for each time of

analysis" (92).

Unlike Mod-METRIC, Dyna-METRIC also allows one to

consider policies of full and partial cannibalization of

aircraft. The full cannibalhzation routine involves two

assumptions. First, it assumes that all the aircraft at a

base look alike (i.e., composed of the same LRUs) and will

lead to overly optimistic results if this assumption is

violated. The second assumption is that "cannibalization

can be done instantly and without consuming resources" (95).

When either of the above assumptions are broken, it is

recommended that, if one wants to include cannibalization in

one's model, a partial cannibalization policy is modeled in

lieu of the. full cannibalization routine (94-95).
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it is beyond the scope of this appendix to introduce

the numerous mathematical equations utilized by Dyna-METRIC.

Interested readers should consult the reference listed at

the beginning of this model's analysis.

Data Inputs: The Dyna-METRIC model requires numerous

user inputs. The following is a partial list of these

inputs:

* Expected pipeline size (i.e., component quantity)
at the location being analyzed

* Pipeline Variance to Mean Ratio (VTMR)
* Component stock level
* Number of aircraft at the base, after attrition
* Number of different types of LRU of which the

aircraft are constructed
* Quantity per application cf LRU i
* Quantity per application of LRU i that must be

operational if the aircraft is fully mission
capable (FMC)

* LRU i stock level at base (92-93)

Assessment: Dyna-METRIC's ability to predict logistics

requirements under dyiiemic conditions has made it a valuable

tool. Early uses of the model are numerous. Ogden Air

Logistics Center uzeA the model to study F-4 and F-16

aircraft readiness and supportability. Headquarters Air

Force Logistics Command used it to study FIoO engine

requirements, and the Tactical Air Command has used it to

analyze the impact of different repair and supply strategies

on F-15 readiness and deployability (Hillestad, 1982:iv).

Dyna-METRIC is not without its limitations, however.

Although the model allows one to model multiple bases, this

capability is weakened because the model can not handle

multiple types of collocated aircraft. Additionally,
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lateral supply and flight line constraints are also "not

explicitly modeled" (V).

A 1988 RAND Corporation report questions the ability of

models such as Dyna-METRIC to model the "failure process and

the resulting series of random demands on supply and

maintenance" (Crawford, 1988:V). Specifically, those models

which assume that component removals follow a Poisson

arrival process "assume the flow of broken parts ('demand

process') into the repair facility will be random, but with

a certain mean and a certain degree of randomness or

'irregularity' (Crawford, 1988:4). The variance-to-mean

ratio (VTMR) is a measure of this variability and thus the

unpredictability of the demand process. Crawford's findings

show that actual VTMRs experienced are significantly greater

than those assumed by the models (such as Dyna-METRIC)

(Crawford, 1988:1). When this happens, "the part will

arrive at the repair process in what appear to be large

random clusters instead of random, but more evenly spaced,

intervals" (4). These results, according to Crawford,

reduce the confidence one can place in these models and may

have a "damaging effect on aircraft availability and wartime

readiness" (Crawford, 1988:vi).

Dyna-METRIC also fails to identify the least cost mix

of LRUs and SRUs needed to satisfy availability goals. The

Aircraft Sustainability Model (ASM)) was developed by the

Logistics Management Institute (LMI) to correct this problem

(Oster, Sakulich, and Stone, 1989:2).
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Appendix D. Condemnations; CER Database

The data in Table 21 represents the entire database

used in the development of condemnation CERs for this

thesis. The data comes from numerous sources. The annual

condemnation costs, number of aircraft, and annual flying

hcurs were all obtained from the Weapon System Cost

Retrieval System (H036C).

The annual sorties and annual landings were obtained

from what is currently referred to as Acquisition Logistics

Division (ALD) Pamphlet 800-4, Acuisition _ianagement

Air'craft Historical Reliability and 'aintainability Data.

Because ALD has been known by different names through the

years, the different volumes of 800-4 have different titles.

The first three volumes were labeled AFALD Pamphlet 800--4.

Sorties and landings data from FY75 through the first half

of FY78 was taken from Volume I. Data from the second half

of FY78 through FY80 came from Volume II, and data from FY81

through the first half of FY83 came from Volume III. The

next two volumes were known as the Air Force Acquisition

Logistics Center (AFALC) Pamphlet 800-4. Data from the

second half of FY83 through FY85 came from Volume IV, and

data from FY86 through FY87 came from Volume V. Finally,

data from FY88 to FY89 came from Volume VI, known as ALD

Pamphlet 800-4.

The remaining physical and performance characteristics

data was taken from various addEnda to AFG 2, Standard
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Aircraft Characteristics. Data for the F-4D and F-4E came

from Addendum 55, Volume 1. Data for the C-5A came from

Addendum 53, Volume 2. Data for the C-130B and T-38A came

from Addendum 54, Volume 2. Data for the F-16A came from

Addendum 58, Volume 1. Data for the A-7D, A-7K, KC-135A,

and A-10A came from Addendum 59, Volume 1. Data for the T-

37B, C-130E, and C-141B came from Addendum 56, Volume 2.

Data for the F-15A and F-15B came from September 1989

Standard Aircraft Characteristics pamphlets (no AFG

references were found on these pamphlets). Finally, the B-

52G, B-52H, F-IID, and FB-I11A data was taken from Addendum

60, Volume 1.
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ITable 21

Condemnations CER Database

D
ANNUAL # ANNUAL ANNUAL U
CONDEMN OF ANNUAL # OF # OF M EMPTY

MDS FY COSTS A/C FLY HRS SORTIES LANDINGS Y WEIGHT

F15A 85 56,284,486 321 71,586 0 26,749
FISA 86 46,541,266 318 75,559 0 26,749
FI5A 87 46,559,725 317 74,363 0 26,749
F15A 88 46,305,459 314 69,722 0 26,749
F15A 89 39,983,476 313 71,684 0 26,749
F15B 85 9,949,506 54 12,691 0 26,832
F15B 86 8,634,666 54 14,114 0 26,832
F15B 87 9,087,565 53 14,327 0 26,832
F15B 88 8,948,457 54 13,495 0 26,832
F15B 89 7,364,837 53 13,382 0 26,832
F16A 85 62,780,304 627 171,748 125,503 127,526 0 15,306
F16A 86 60,804,303 619 168,671 126,265 127,488 0 15,306
F16A 87 67,173,261 615 175,137 134,365 138,092 0 15,306
FI6A 88 61,454,897 604 167,914 112,759 113,563 0 15,306
F16A 89 55,416,270 563 165,706 112,336 113,021 0 15,306
F4D 76 15,609,443 494 104,756 68,020 0 28,873
F4D 77 13,008,510 472 101,750 70,210 0 28,873
F4D 78 17,001,188 467 96,590 72,091 0 28,873
F4D 79 20,153,467 456 100,067 77,301 91,781 0 28,873
F4D 80 22,737,395 450 89,927 69,192 86,888 0 28,873
F4E 77 13,565,579 697 168,900 121,195 0 30,328
F4E 78 19,369,172 671 158,431 119,474 0 30,328 1
F4E 79 18,444,521 626 155,493 119,391 144,590 0 30,328, # I
F4E 80 19,210,958 546 129,388 101,179 114,328 0 30,328
F4E 81 24,254,355 499 113,343 89,376 98,232 0 30,328
A7D 76 13,370,606 407 82,159 51,267 0 19,733
A7D 77 9,251,047 406 109,914 64,787 0 19,733
A7D 78 14,151,911 384 101,421 61,127 0 19,733
A7D 79 13,002,152 376 94,101 59,537 59,903 0 19,733
A7D 80 13,564,173 371 91,423 59,985 60,285 0 19,733
A7K 83 1,251,303 31 8,292 0 21,300
A7K 84 1,057,256 31 8,630 0 21,300
A7K 85 1,179,063 29 8,122 5,520 5,533 0 21,300
A7K 86 1,145,533 30 6,040 4,159 4,181 0 21,300
A7K 87 919,806 30 6,583 4,450 4,464 0 21,300
AIOA 84 17,683,981 668 226,171 0 21,541
AXOA 85 18,505,945 663 222,569 132,998 133,776 0 21,541
A1OA 86 22,482,695 659 219,958 132,998 133,314 0 21,541
A1OA 87 26,952,091 651 224,177 134,048 134,057 0 21,541
A1OA 88 22,279,258 627 211,892 128,100 128,119 0 21,541
FI11D 78 13,729,867 90 15,140 6,335 0 46,949
FI11D 79 13,600,558 85 17,270 7,416 11,288 0 46,949
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Table 21 (Continued)

Condemnations CER Database

D
ANNUAL # ANNUAL ANNUAL U
CONDEMN OF ANNUAL # OF # OF M EMPTY

MDS FY COSTS A/C FLY HRS SORTIES LANDINGS Y WEIGHT

FI11D 80 15,719,180 84 17,828 8,152 12,108 0 46,949
FI11D 81 14,234,373 83 17,906 7,811 11,609 0 46,949
FI11D 82 13,848,110 82 16,933 7,666 11,678 0 46,949
T37B 76 5,344,323 749 255,018 208,570 0 4,067
T37B 77 4,247,758 680 273,220 219,115 0 4,067
T37B 78 6,278,631 697 255,861 94,961 0 4,067
T37B 79 7,757,701 668 288,414 229,489 790,846 0 4,067
T37B 80 5,521,700 649 288,141 231,083 798,415 0 4,067
T38A 75 15,501,426 990 404,275 338,665 0 7,410
T38A 76 10,235,854 984 309,753 247,519 0 7,410
T38A 77 13,817,793 916 338,751 278,209 0 7,410
T38A 78 14,497,282 819 305,805 119,75. 0 7,410
T38A 79 18,747,947 777 312,855 257,550 829,486 0 7,410
B52G 76 35,158,761 174 69,194 9,335 1 180,041
B52G 77 49,605,497 172 65,512 8,496 1 180,041
B52G 78 52,700,602 173 64,269 8,324 1 180,041
B52G 79 56,680,050 173 65,013 9,042 25,617 1 180,041
B52G 80 54,222,043 173 63,713 9,705 27,839 1 180,041
B52H 76 16,499,476 97 36,635 4,920 1 184,291
B52H 77 20,263,183 97 36,346 4,543 1 184,291
B52H 78 21,980,774 96 36,513 4,567 1 184,291
B52H 79 22,330,298 96 36,691 5,075 15,055 1 184,291
B52H 80 22,374,407 93 36,430 5,103 13,971 1 184,291
C5A 76 37,813,318 73 36,710 7,252 1 320,085
C5A 77 34,824,717 77 48,590 9,948 1 320,085
C5A 78 41,647,986 75 48,282 4,693 1 320,085
C5A 79 44,176,326 77 48,657 10,222 31,690 1 320,085
C5A 80 46,922,447 77 51,133 10,570 32,389 1 320,085
C130B 76 3,968,334 97 37,811 14,905 1 72,300
C130B 77 2,893,091 94 36,585 14,208 1 72,300
C130B 78 2,738,158 93 37,836 18,398 1 72,300
C130B 79 2,781,287 9,t 36,923 19,536 50,361 1 72,300
C130B 80 4,587,832 9, 37,621 20,285 52,571 1 72,300
C130E 76 16,066,401 338 169,480 74,174 1 73,804
C130E 77 12,798,896 309 162,304 66,747 1 73,804
C130E 78 12,935,999 280 164,117 90,682 1 73,804
C130E 79 12,414,932 27-' 161,280 96,839 225,448 1 73,804
C130E 80 18,359,622 276' 162,342 99,644 234,637 1 73,804
C141B 82 50,958,201 26) 262,960 73,405 161,239 1 140,882
C141B 83 55,749,449 268 289,119 87,879 177,036 1 140,882
C141B 84 53,723,129 268 290,509 1 140,882
C141B 85 39,329,435 26"7 290,142 89,976 184,982 1 140,882
C141B 86 44,991,514 266 289,039 88,977 187,656 1 140,882
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Table 21 (Continued)

Condemnations CER Database

D
ANNUAL # ANNUAL ANNUAL U
CONDEMN OF ANNUAL # OF # OF M EMPTY

MDS FY COSTS A/C FLY HRS SORTIES LANDINGS Y WEIGHT

KC135A 75 57,757,551 607 220,148 47,430 1 97,030
KC135A 76 41,902,937 606 205,175 39,807 1 97,030
KC135A 77 60,962,617 599 189,271 43,958 1 97,030
KC135A 78 70,731,943 598 193,618 47,549 1 97,030
KC135A 79 81,852,238 587 193,084 49,601 157,466 1 97,030
FB111A 76 10,251,819 74 16,886 3,892 0 47,481
FB111A 77 10,123,838 70 18,469 4,870 0 47,481
FBI11A 78 16,176,540 68 15,839 4,566 0 47,481
FB111A 79 13,769,682 67 18,286 5,416 9,295 0 47,481
FB111A 80 19,071,741 66 17,443 5,418 10,491 0 47,481

Table 21 (Continued)

Condemnations CER Database

THRUST E LENGTH MAX MAX MAX
PER N PLUS MAX TAKEOFF LOAD CLIMB COMBAT

MDS ENGINE G SPAN SPEED WEIGHT FACTOR RATE RADIUS

Fi5A 23,830 2 106.56 1,309 56,000 7.33 61,340 515
F15B 23,830 2 106.56 1,309 56,000 7.33 59,930 502
F16A 23,830 1 82.28 1,181 35,400 9 60,288 693
F4D 17,000 2 96.6 1,210 59,483 6.5 55,600 783
F4E 17,900 2 101.4 1,245 61,795 7.75 49,800 741
A7D 14,250 1 84.8 608 39,325 7 8,000 600
A7K 14,500 1 87.42 569 42,000 7 9,485 282
A1OA 9,065 2 110.5 362 49,774 7.33 6,203 351
F1I1D 20,840 2 136.47 1,262 100,000 7 45,000 1,270
T37B 1,025 1 63.1 357 6,800 6.67 3,600 167
T38A 3,850 2 71.6 709 11,761 7.33 33,300 305
B52G 13,750 8 346.9 549 488.000 2 8,243 3,118
B52H 17,000 8 345.3 547 488,000 2 9,628 3,747
C5A 40,805 4 470.5 495 769,000 2.5 5,580 2,519
C130B 9,388 4 230.4 330 135,000 3 4,420 1,549
C130E 9,388 4 230.4 317 175,000 3 4,060 1,866
C141B 21,000 4 328.4 493 323,100 2.5 6,300 2,366
KC135A 13,750 4 267.00 527 300,800 2.00 6,350 1,613
FB111A 20,350 2 145.54 1,262 119,243 3.00 33,800

220



Appendix E. Model Validation Database

The following table provides the data used in both the

validation and sensitivity tests. Data included in Table 22

taken from the same sources used in Table 21.

Table 22

Model Validation Database

CONDEMN # OF ANNUAL FLY HRS # OF
MDS COSTS FY MDS FLY HRS PER AC SORTIES

FI6A 27,537,555 198$ 514 118,018 229.61 85,379
F4D 24,151,890 198. 445 89,844 201.90 68,869
F4E 24,254,355 198. 499 113,343 227.14 89,376
A7D 20,075,237 1981 360 83,120 230.89 56,073
A7K 1,560,822 1988 30 7,381 246.03 4,874
AIOA 12,012,017 1989 586 218,690 373.19 126,809
FI11D 14,831,043 1983 82 18,368 224.00 8,406
B52G 43,909,467 198 172 63,959 371.85 9,465
B52H 20,415,995 1981 96 37,873 394.51 5,226
C5A 71,036,363 1981 77 52,160 677.40 10,373
C130B 4,698,837 1981 91 36,443 400.47 20,310
C130E 18,837,210 1981 279 168,526 604.04 99,436
C141B 51,264,650 1987 267 284,065 1,063.91 87,102
FB111A 13,471,819 1981 63 17,332 275.11 5,513
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Table 22 (Contin~ied)

Model Validation Database

TAKEOFF
FLY HRS THRUST WEIGHT / MAX

PER PER EMPTY FLYAWAY MAX LOAD
MDS SORTY ENGINE WEIGHT COST SPEED FACTOR

F16A 1.38 23,830 2.31 11,646,586 1,181 9.00
F4D 1.30 17,000 2.06 8,433,735 1,210 6.50
F4E 1.27 17,900 2.04 10,140,562 1,245 7.75
A7D 1.48 14,250 1.99 8,734,940 608 7.00
A7K 1.51 14,500 1.97 16,767,068 569 7.00
A1OA 1.72 9,065 2.31 8,734,940 362 7.33
Fl1D 2.19 20,840 2.13 39,859,438 1,262 7.00
B52G 6.76 13,750 2.71 54,819,277 549 2.00
B52H 7.25 17,000 2.65 60,240,964 547 2.00
C5A 5.03 40,805 2.40 139,959,839 495 2.50
C130B 1.79 9,388 1.87 18,172,691 330 3.00
C130E 1.69 9,388 2.37 10,943,775 317 3.00
C141B 3.26 21,000 2.29 34,437,751 493 2.50
FB111A 3.14 20,350 2.37 39,658,635 1262 3.00
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Appendix F. Model Sensitivity Test Results

Table 23

Model Sensitivity Test Results

"SORT" Variable Multiplied by 1.2

NEW NEW
NEW EST./ NEW EST./

LINEAR ORIG. ARITHMETIC ORIG.
MDS ESTIMATE EST. ESTIMATE EST.

F16A 42,377,500 1.06 41,424,889 1.06
F4D 20,732,006 1.11 20,364,706 1.12
F4E 24,314,651 1.12 23,999,556 1.12
A7D 12,487,371 1.15 12,469,575 1.15
A7K 2,622,908 1.06 3,264,162 1.04
A10A 34,227,437 1.12 31,527,170 1.13
FIID 17,116,714 1.01 17,239,688 1.01
B52G 36,356,178 1.01 35,914,610 1.01
B52H 36,263,284 1.00 35,856,568 1.00
C5A 50,712,950 1.01 51,933,888 1.01
C130B (4,617,817) 0.88 (3,648,991) 0.86
C130E 32,373, i71 1.10 29,873,545 1.10
C141B 38,679,337 1.07 37,494,591 1.07
FB111A 27,094,876 1.01 26,468,474 1.01

"SORT" Variable Multiplied by .8

NEW NEW
NEW EST./ NEW EST./

LINEAR ORIG. ARITHMETIC ORIG.
MDS ESTIMATE EST. ESTIMATE EST.

F16A 37,282,081 0.94 36,588,133 0.94
F4D 16,621,904 0.89 16,463,249 0.89
F4E 18,980,691 0.88 18,936,369 0.88
A7D 9,140,934 0.85 9,293,016 0.85
A7K 2,332,028 0.94 2,988,048 0.96
A10A 26,659,475 0.88 24,343,387 0.87
FIID 16,615,044 0.99 16,763,485 0.99
B52G 35,791,307 0.99 35,378,414 0.99
B52H 35,951,397 1.00 35,560,513 1.00
C5A 50,093,889 0.99 51,346,253 0.99
C130B (5,829,918) 1.12 (4,799,561) 1.14
C130E 26,439,330 0.90 24,240,454 0.90
C141B 33,481,089 0.93 32,560,226 0.93
FBI11A 26,765,860 0.99 26,156,160 0.99
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Table 23 (Continued)

Model Sensitivity Test Results

"THRUST" Variable Multiplied by 1.2

NEW NEW
NEW EST./ NEW EST./
LINEAR ORIG. ARITHMETIC ORIG.

MDS ESTIMATE EST. ESTIMATE EST.

F16A 44,823,135 1.13 44,443,737 1.14
F4D 22,239,140 1.19 22,292,820 1.21
F4E 25,398,441 1.17 25,552,156 1.19
A7D 13,800,101 1.28 14,132,678 1.30
A7K 5,515,802 2.23 6,434,530 2.06
A10A 32.,342,939 1.06 30,003,614 1.07
Fl1D 21,232,698 1.26 21,756,592 1.28
B52G 38,954,921 1.08 38,783,811 1.09
B52H 39,669,525 1.10 39,587,384 1.11
C5A 58,953,710 1.17 60,950,435 1.18
C130B (3,256,703) 0.62 (2,082,242) 0.49
C130E 31,373,665 1.07 29,199,033 1.08
C141B 40,480,559 1.12 39,818,921 1.14
FB111A 31,194,512 1.16 30,955,520 1.18

"THRUST" Variable Multiplied by .8

NEW NEW
NEW EST./ NEW EST./
LINEAR ORIG. ARITHMETIC ORIG.

MDS ESTIMATE EST. ESTIMATE EST.

F16A 34,836,446 0.87 33,569,%86 0.86
F4D 15,114,770 0.81 14,5ab,134 0.79
F4E 17,896,900 0.83 17,383,769 0.81
A7D 7,828,204 0.72 7,629,912 0.70
A7K (560,866) (0.23) (182,320) (0.06)
A1OA 28,543,974 0.94 25:866,942 0.93
FI11D 12,499,060 0.74 12,246,581 0.72
B52G 33,192,563 0.92 32,509,212 0.91
B52H 32,545,156 0.90 31,829,698 0.89
C5A 41,853,129 0.83 42i329,706 0.82
C130B (7,191,031) 1.38 (6,366,310) 1.51
C130E 27,439,337 0.93 24,914,965 0.92
C141B 31,679,867 0.88 30,235,897 0.86
FB111A 22,666,224 0.84 21,66a,114 0.82
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Table 23 (Continued)

Model Sensitivity Test Results

TOEMPWT and TOEMPWT2
Multiplied by 1.2

NEW NEW
NEW EST./ NEW EST./

LINEAR ORIG. ARITHMETIC ORIG.
MDS ESTIMATE EST. ESTIMATE EST.

F16A 60,945,609 1.53 61,293,680 1.57
F4D 37,486,025 2.01 36,097,700 1.96
F4E 40,250,368 1.86 38,765,765 1.81
A7D 29,008,730 2.68 27,428,438 2.52
A7K 20,480,102 8.27 19,325,961 6.18
A10A 51,539,598 1.69 50,180,931 1.80
FI11D 36,312,315 2.15 35,904,080 2.11
B52G 60,815,791 1.69 66,245,733 1.86
B52H 60,301,595 1.67 64,967,814 1.82
C5A 72,315,197 1.43 75,639,133 1.46
C130B 11,849,059 (2.27) 10,345,571 (2.45)
C130E 51,044,381 1.74 50,459,835 1.86
C141B 56,987,700 1.58 56,876,972 1.62
FB111A 48,578,704 1.80 49,737,775 1.89

TOEMPWT and TOEMPWT2
Multiplied by .8

NEW NEW
NEW EST./ NEW EST./
LINEAR ORIG. ARITHMETIC ORIG.

MDS ESTIMATE EST. ESTIMATE EST.

F16A 18,713,972 0.47 20,771,555 0.53
F4D (132,115) (0.01) 3,945,477 0.21
F4E 3,044,973 0.14 7,315,216 0.34
A7D (7,380,425) (0.68) (2,657,276) (0.24)
A7K (15,525,166) (6.27) (10,128,323) (3.24)
A10A 9,347,314 0.31 9,734,289 0.35
FI11D (2,580,557) (0.15) 1,535,910 0.09
B52G 11,331,694 0.31 10,610,785 0.30
B52H 11,913,086 0.33 11,769,135 0.33
C5A 28,491,642 0.57 32,004,474 0.62
C130B (22,296,794) 4.27 (16,145,060) 3.82
C130E 7,768,621 0.26 7,909,225 0.29
C141B 15,172,725 0.42 17,150,493 0.49
FB111D 5,282,032 0.20 7,146,033 0.27
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A.ppendix G. Demand Volatility Analysis Database

The tables presented in Appendix G provide the data

used to perform the demand volatility analysis. Table 24

and 25 provide the actual data used in the analysis. Table

26 provides the original replenishment spares database. It

is in then year dollars and the engine spares and common

spares pools have not been distributed. Table 27 provides

the inflation rates used to adjust the figures in Table 26

to FY91 constant dollars. Table 28 shows what percentage of

the engine hours were associated with the F-15 and F-16

aircraft and then shows how this data was used to determine

how the engine spares pool would be distributed between the

F-15 and F-16. Finally, Table 29 provides the common spares

allocation factors used to distribute the common spares pool

among the MD.

Several sources were used to obtain the data. The

condemnations and engine hours data was obtained from the

Weapon System Cost Retrieval System (WSCRS). The orignal

replenishment spares requirements data was obtained from

unpublished records maintained by HQ AFLC/FMBSR. The common

spares distribution factors were obtained from Ms. Virginia

Mattern of the Logistics Management Institute (LMI).

Finally, the inflation factors were obtained from AFR 173-

13, US Air Force Cost and Planning Factors.
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Table 26

Original Replenishment Spares Requirements Data

MDS FY82 FY83 FY84 FY85 FY86 FY87 FY88

A7 48.2 57.3 28.4 20.3 11.8 14.2 9.3
A10 81.9 114.4 101.1 84.3 37.8 43.9 46
B52 155.8 275.7 196.2 96.9 75.3 36.9 50.5
FB111 37.2 62.2 28.3 19.8 10.3 17.2 0
FIll 357.4 459 270.5 220.6 155 255.2 232.6
C5 434.6 148.9 97 45.4 78.4 124.5 150
C130 123 84.5 93.1 100.3 87.4 53.3 51.8
C135 104.3 69.2 54.5 113.3 107.5 69.1 111.6
C141 53 36.7 43.9 56.5 16 46.7 34.1
F4 143.9 237.7 181.2 87.1 57.8 58.1 40.5
FI5 284.1 192.8 182.8 93.8 62.6 157.9 224.4
F16 59.7 61.5 77 313.4 162.9 111.6 211.9
T37 30.1 27.5 12 7.5 3.5 1.6
T38 77.2 31.9 42.9 30.8 15.5 20.7
F100 409.8 421.4 285.4 397.8 453.7 493.7 380.9
Fl10 0 0 0 0 66.9 107.7 155.8
COMM 704.9 719 419.8 419.4 276 239.5 265.3
TOT 3105.1 2999.7 2114.1 2140.8 1697.7 1848.5 1987.0

Table 27. Inflation Factors

FY82 FY83 FY84 FY85 FY86 FY87 FY88

.771 .801 .824 .852 .886 .921 .959

229



Table 28

Engine Spares Requirements Distribution

FY82 FY83 FY84 FY85 FY86 FY87 FY88

FI5 298,958 327,872 353,232 363,792 389,576 385,474 360,181
F15A
.15B
F15D 2,907 3,936
F15C 1,802 19,855 37,977
FISE 838
SUB 298,958 327,872 353,232 363,792 391,378 408,236 402,932
F16 95,755 137,843 194,490 211,820 242,284 268,076 271,992
F16B
FI6C 2,442 6,255
F16D 419 299
SUB 95,755 137,843 194,490 211,820 242,284 270,937 278,546
TOT 394,713 465,715 547,722 575,612 633,662 679,173 681,478
F15% 0.76 0.70 0.64 0.63 0.62 0.60 0.59
F.5
SHARE 310.38 296.67 184.06 251.41 280.23 296.75 225.21
F16
SHARE 99.42 124.73 101.34 146.39 173.47 196.95 155.69

Table 29

LMI Common Spares Distribution Factors

FY82 FY83 FY84 FY85 FY86 FY87 FY88

A7 3.9 1 1.2 1.8 1.0 1.2 2.6
A10 7.0 4.2 3.0 4.0 4.0 2.2 0.9
B52 17.5 25.2 15.8 22.1 22.0 8.7 5.8
FB111 0.6 0.2 0.3 0.3 0.6 0.5 0.2
Fll 4.6 1.5 1.8 1.2 0.7 1.3 1.1
C5 1.1 0.7 0.9 1.3 1.3 1.5 0.8
C130 3.5 1.8 5.1 7.5 7.7 7.9 4.4
C135 5.2 11.4 12 11.8 13.8 19.0 12.2
C141 10.4 13.3 12.3 7.9 9.8 13.5 8.1
F4 24.2 10.1 9 5.7 4.0 2.8 2.4
FI5 6.1 2.5 4.1 3.8 2.4 4.2 8.6
F16 5.7 3.2 4.4 10.1 6.2 13.7 33.0
T37 1.4 1.0 0.4
T38 4.0 12.7 11.4 1.4 2.0 1.5
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